Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis

被引:68
|
作者
McAllister, Kathleen N. [1 ]
Bouillaut, Laurent [2 ,4 ]
Kahn, Jennifer N. [1 ]
Self, William T. [3 ]
Sorg, Joseph A. [1 ]
机构
[1] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
[2] Tufts Univ, Sch Med, Dept Mol Biol & Microbiol, Boston, MA 02111 USA
[3] Univ Cent Florida, Burnett Sch Biomed Sci, Orlando, FL 32816 USA
[4] Matrivax R&D Corp, 650 Albany St, Boston, MA USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
CLOSTRIDIUM-DIFFICILE; ESCHERICHIA-COLI; RNA-POLYMERASE; ENDONUCLEASE; VIRULENCE; SEQUENCE;
D O I
10.1038/s41598-017-15236-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clostridium difficile is a significant concern as a nosocomial pathogen, and genetic tools are important when analyzing the physiology of such organisms so that the underlying physiology/pathogenesis of the organisms can be studied. Here, we used TargeTron to investigate the role of selenoproteins in C. difficile Stickland metabolism and found that a TargeTron insertion into selD, encoding the selenophosphate synthetase that is essential for the specific incorporation of selenium into selenoproteins, results in a significant growth defect and a global loss of selenium incorporation. However, because of potential polar effects of the TargeTron insertion, we developed a CRISPR-Cas9 mutagenesis system for C. difficile. This system rapidly and efficiently introduces site-specific mutations into the C. difficile genome (20-50% mutation frequency). The selD CRISPR deletion mutant had a growth defect in protein-rich medium and mimicked the phenotype of a generated TargeTron selD mutation. Our findings suggest that Stickland metabolism could be a target for future antibiotic therapies and that the CRISPR-Cas9 system can introduce rapid and efficient modifications into the C. difficile genome.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing
    Yadav, Banita
    Majhi, Ashis
    Phagna, Kanika
    Meena, Mukesh Kumar
    Ram, Hasthi
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2023, 23 (04)
  • [42] Programmed gRNA Removal System for CRISPR-Cas9-Mediated Multi-Round Genome Editing in Bacillus subtilis
    Lim, Hayeon
    Choi, Soo-Keun
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [43] Generation of knock-in lampreys by CRISPR-Cas9-mediated genome engineering
    Daichi G. Suzuki
    Hiroshi Wada
    Shin-ichi Higashijima
    Scientific Reports, 11
  • [44] An Ultrasensitive Calcium Reporter System via CRISPR-Cas9-Mediated Genome Editing in Human Pluripotent Stem Cells
    Jiang, Yuqian
    Zhou, Yuxiao
    Bao, Xiaoping
    Chen, Chuanxin
    Randolph, Lauren N.
    Du, Jing
    Lian, Xiaojun Lance
    ISCIENCE, 2018, 9 : 27 - +
  • [45] CRISPR-Cas9-mediated genome editing improves motor deficits and lifespan in a mouse model of Huntington's disease
    Ekman, F. K.
    Ojala, D. J.
    Adil, M.
    Lopez, P. A.
    Schaffer, D. V.
    Gaj, T.
    HUMAN GENE THERAPY, 2019, 30 (11) : A90 - A90
  • [46] Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing
    Banita Yadav
    Ashis Majhi
    Kanika Phagna
    Mukesh Kumar Meena
    Hasthi Ram
    Functional & Integrative Genomics, 2023, 23
  • [47] Identifying Signalling Pathways Regulated by GPRC5B in β-Cells by CRISPR-Cas9-Mediated Genome Editing
    Atanes, Patricio
    Ruz-Maldonado, Inmaculada
    Hawkes, Ross
    Liu, Bo
    Persaud, Shanta J.
    Amisten, Stefan
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 45 (02) : 656 - 666
  • [48] Tracking-seq reveals the heterogeneity of off-target effects in CRISPR-Cas9-mediated genome editing
    Zhu, Ming
    Xu, Runda
    Yuan, Junsong
    Wang, Jiacheng
    Ren, Xiaoyu
    Cong, Tingting
    You, Yaxian
    Ju, Anji
    Xu, Longchen
    Wang, Huimin
    Zheng, Peiyuan
    Tao, Huiying
    Lin, Chunhua
    Yu, Honghao
    Du, Juanjuan
    Lin, Xin
    Xie, Wei
    Li, Yinqing
    Lan, Xun
    NATURE BIOTECHNOLOGY, 2024,
  • [49] High-efficiency CRISPR gene editing in C. elegans using Cas9 integrated into the genome
    Schwartz, Matthew L.
    Davis, M. Wayne
    Rich, Matthew S.
    Jorgensen, Erik M.
    PLOS GENETICS, 2021, 17 (11):
  • [50] Applying CRISPR/Cas9-Mediated Genome Editing To Generate Mouse Models Of Autism Spectrum Disorders
    Tian, Di
    Lu, Hung-Chi
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2017, 76 (06): : 534 - 534