Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis

被引:68
|
作者
McAllister, Kathleen N. [1 ]
Bouillaut, Laurent [2 ,4 ]
Kahn, Jennifer N. [1 ]
Self, William T. [3 ]
Sorg, Joseph A. [1 ]
机构
[1] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
[2] Tufts Univ, Sch Med, Dept Mol Biol & Microbiol, Boston, MA 02111 USA
[3] Univ Cent Florida, Burnett Sch Biomed Sci, Orlando, FL 32816 USA
[4] Matrivax R&D Corp, 650 Albany St, Boston, MA USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
CLOSTRIDIUM-DIFFICILE; ESCHERICHIA-COLI; RNA-POLYMERASE; ENDONUCLEASE; VIRULENCE; SEQUENCE;
D O I
10.1038/s41598-017-15236-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clostridium difficile is a significant concern as a nosocomial pathogen, and genetic tools are important when analyzing the physiology of such organisms so that the underlying physiology/pathogenesis of the organisms can be studied. Here, we used TargeTron to investigate the role of selenoproteins in C. difficile Stickland metabolism and found that a TargeTron insertion into selD, encoding the selenophosphate synthetase that is essential for the specific incorporation of selenium into selenoproteins, results in a significant growth defect and a global loss of selenium incorporation. However, because of potential polar effects of the TargeTron insertion, we developed a CRISPR-Cas9 mutagenesis system for C. difficile. This system rapidly and efficiently introduces site-specific mutations into the C. difficile genome (20-50% mutation frequency). The selD CRISPR deletion mutant had a growth defect in protein-rich medium and mimicked the phenotype of a generated TargeTron selD mutation. Our findings suggest that Stickland metabolism could be a target for future antibiotic therapies and that the CRISPR-Cas9 system can introduce rapid and efficient modifications into the C. difficile genome.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Heritable/conditional genome editing in C. elegans using a CRISPR-Cas9 feeding system
    Pengpeng Liu
    Lijiang Long
    Kai Xiong
    Bo Yu
    Nannan Chang
    Jing-Wei Xiong
    Zuoyan Zhu
    Dong Liu
    Cell Research, 2014, 24 : 886 - 889
  • [32] Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans
    Paix, Alexandre
    Folkmann, Andrew
    Seydoux, Geraldine
    METHODS, 2017, 121 : 86 - 93
  • [33] Heritable/conditional genome editing in C. elegans using a CRISPR-Cas9 feeding system
    Liu, Pengpeng
    Long, Lijiang
    Xiong, Kai
    Yu, Bo
    Chang, Nannan
    Xiong, Jing-Wei
    Zhu, Zuoyan
    Liu, Dong
    CELL RESEARCH, 2014, 24 (07) : 886 - 889
  • [34] Heritable genome editing in C. elegans via a CRISPR-Cas9 system
    Friedland, Ari E.
    Tzur, Yonatan B.
    Esvelt, Kevin M.
    Colaiacovo, Monica P.
    Church, George M.
    Calarco, John A.
    NATURE METHODS, 2013, 10 (08) : 741 - +
  • [35] Heritable genome editing in C. elegans via a CRISPR-Cas9 system
    Ari E Friedland
    Yonatan B Tzur
    Kevin M Esvelt
    Monica P Colaiácovo
    George M Church
    John A Calarco
    Nature Methods, 2013, 10 : 741 - 743
  • [36] CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells
    Liu, Xiaojuan
    Zhang, Yongping
    Cheng, Chen
    Cheng, Albert W.
    Zhang, Xingying
    Li, Na
    Xia, Changqing
    Wei, Xiaofei
    Liu, Xiang
    Wang, Haoyi
    CELL RESEARCH, 2017, 27 (01) : 154 - 157
  • [37] CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells
    Xiaojuan Liu
    Yongping Zhang
    Chen Cheng
    Albert W Cheng
    Xingying Zhang
    Na Li
    Changqing Xia
    Xiaofei Wei
    Xiang Liu
    Haoyi Wang
    Cell Research, 2017, 27 : 154 - 157
  • [38] CRISPR-Cas9-mediated homology-directed repair for precise gene editing
    Liao, Hongyu
    Wu, Jiahao
    VanDusen, Nathan J.
    Li, Yifei
    Zheng, Yanjiang
    MOLECULAR THERAPY NUCLEIC ACIDS, 2024, 35 (04):
  • [39] Generation of knock-in lampreys by CRISPR-Cas9-mediated genome engineering
    Suzuki, Daichi G.
    Wada, Hiroshi
    Higashijima, Shin-ichi
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [40] CRISPR-Cas9-mediated editing of GmARM improves resistance to multiple stresses in soybean
    Luo, Tingting
    Ma, Chongxuan
    Fan, Yuanhang
    Qiu, Zhendong
    Li, Ming
    Tian, Yusu
    Shang, Yuzhuo
    Liu, Chang
    Cao, Qingqian
    Peng, Yuhan
    Zhang, Shuzhen
    Liu, Shanshan
    Song, Bo
    PLANT SCIENCE, 2024, 346