Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis

被引:68
|
作者
McAllister, Kathleen N. [1 ]
Bouillaut, Laurent [2 ,4 ]
Kahn, Jennifer N. [1 ]
Self, William T. [3 ]
Sorg, Joseph A. [1 ]
机构
[1] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
[2] Tufts Univ, Sch Med, Dept Mol Biol & Microbiol, Boston, MA 02111 USA
[3] Univ Cent Florida, Burnett Sch Biomed Sci, Orlando, FL 32816 USA
[4] Matrivax R&D Corp, 650 Albany St, Boston, MA USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
CLOSTRIDIUM-DIFFICILE; ESCHERICHIA-COLI; RNA-POLYMERASE; ENDONUCLEASE; VIRULENCE; SEQUENCE;
D O I
10.1038/s41598-017-15236-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clostridium difficile is a significant concern as a nosocomial pathogen, and genetic tools are important when analyzing the physiology of such organisms so that the underlying physiology/pathogenesis of the organisms can be studied. Here, we used TargeTron to investigate the role of selenoproteins in C. difficile Stickland metabolism and found that a TargeTron insertion into selD, encoding the selenophosphate synthetase that is essential for the specific incorporation of selenium into selenoproteins, results in a significant growth defect and a global loss of selenium incorporation. However, because of potential polar effects of the TargeTron insertion, we developed a CRISPR-Cas9 mutagenesis system for C. difficile. This system rapidly and efficiently introduces site-specific mutations into the C. difficile genome (20-50% mutation frequency). The selD CRISPR deletion mutant had a growth defect in protein-rich medium and mimicked the phenotype of a generated TargeTron selD mutation. Our findings suggest that Stickland metabolism could be a target for future antibiotic therapies and that the CRISPR-Cas9 system can introduce rapid and efficient modifications into the C. difficile genome.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] An Efficient Genome Editing Strategy To Generate Putative Null Mutants in Caenorhabditis elegans Using CRISPR/Cas9
    Wang, Han
    Park, Heenam
    Liu, Jonathan
    Sternberg, Paul W.
    G3-GENES GENOMES GENETICS, 2018, 8 (11): : 3607 - 3616
  • [22] Ex Vivo Liver-Directed Gene Therapy Using CRISPR-Cas9-Mediated Genome Editing in Mice
    Guthman, Rebekah M.
    Allen, Kari L.
    Du, Zeji
    Nicolas, Clara T.
    Lillegard, Joseph B.
    Hickey, Raymond D.
    MOLECULAR THERAPY, 2017, 25 (05) : 116 - 116
  • [23] CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs
    Lee, Ho Joung
    Kim, Hyun Ju
    Lee, Sang Jun
    GENOME RESEARCH, 2020, 30 (05) : 768 - 775
  • [24] Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing
    Kina, Hirono
    Yoshitani, Takashi
    Hanyu-Nakamura, Kazuko
    Nakamura, Akira
    DEVELOPMENT GROWTH & DIFFERENTIATION, 2019, 61 (04) : 265 - 275
  • [25] In vivo correction of an infertility disease by CRISPR-Cas9-mediated genome editing of the adult mouse germline
    Sanchez-Martin, Manuel
    Garcia-Tunon, Ignacio
    Felipe, Natalia
    Gomez-H, Laura
    Shibuya, Hiroki
    Luis Barbero, Jose
    Schimenti, John C.
    Montoya, Guillermo
    Watanabe, Yoshi
    Llano, Elena
    Pendas, Alberto M.
    TRANSGENIC RESEARCH, 2016, 25 (02) : 259 - 260
  • [26] CRISPR-Cas9-mediated gene editing in human MPS I fibroblasts
    de Carvalho, Talita Giacomet
    Schuh, Roselena
    Pasqualim, Gabriela
    Pellenz, Felipe Matheus
    Filippi-Chiela, Eduardo Cremonese
    Giugliani, Roberto
    Baldo, Guilherme
    Matte, Ursula
    GENE, 2018, 678 : 33 - 37
  • [27] Manipulating gene translation in plants by CRISPR-Cas9-mediated genome editing of upstream open reading frames
    Si, Xiaomin
    Zhang, Huawei
    Wang, Yanpeng
    Chen, Kunling
    Gao, Caixia
    NATURE PROTOCOLS, 2020, 15 (02) : 338 - 363
  • [28] CRISPR-Cas9 Mediated Genome Editing in Drosophila
    Peng, Ping
    Wang, Xia
    Shen, Da
    Sun, Jin
    Jia, Yu
    Xu, Rong-Gang
    Zhu, Li-Fei
    Ni, Jian-Quan
    BIO-PROTOCOL, 2019, 9 (02):
  • [29] CRISPR/Cas9-mediated genome editing in plants
    Liu, Xuejun
    Xie, Chuanxiao
    Si, Huaijun
    Yang, Jinxiao
    METHODS, 2017, 121 : 94 - 102
  • [30] Mosaicism in CRISPR/Cas9-mediated genome editing
    Mehravar, Maryam
    Shirazi, Abolfazl
    Nazari, Mahboobeh
    Banan, Mehdi
    DEVELOPMENTAL BIOLOGY, 2019, 445 (02) : 156 - 162