Land Cover Classification Using ICESat-2 Photon Counting Data and Landsat 8 OLI Data: A Case Study in Yunnan Province, China

被引:7
|
作者
Pan, Jiya [1 ,2 ,3 ]
Wang, Cheng [4 ]
Wang, Jinliang [1 ,2 ,3 ]
Gao, Fan [5 ]
Liu, Qianwei [1 ,2 ,3 ]
Zhang, Jianpeng [1 ,2 ,3 ]
Deng, Yuncheng [1 ,2 ,3 ]
机构
[1] Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China
[2] Key Lab Resources & Environm Remote Sensing Univ, Kunming 650500, Yunnan, Peoples R China
[3] Ctr Geospatial Informat Engn & Technol Yunnan Pro, Kunming 650500, Yunnan, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[5] Yunnan Minzu Univ, Org Dept, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing; Photonics; Feature extraction; Earth; Artificial satellites; Correlation; Random forests; Feature selection; Ice; Cloud; and land Elevation Satellite-2 (ICESat-2); land cover classification; Landsat; 8; random forest (RF); ICESAT/GLAS;
D O I
10.1109/LGRS.2022.3209725
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Land cover classification is important for effectively protecting and developing land resources. This study investigates the joint use of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) data and Landsat 8 Operational Land Imager (OLI) data in land cover classification with random forest (RF) in Yunnan province, China, to explore the application potential of photon counting light detection and ranging (LiDAR) data in land cover classification. The contributions of this letter are: 1) the joint use of ICESat-2 and Landsat 8 image datasets can provide better land cover classification accuracy, achieving 10% and 3% accuracy gains for five types (forest/low-vegetation/water/construction-land/barren) and four types (vegetation/water/construction-land/barren)of land cover, respectively; 2) the proposed feature selection improves the overall accuracy by 1.5% and 1% for five and four land cover types, respectively; 3) the accuracy of the land cover classification reached 82% and 98% for five and four types of land cover; and 4) the terrain factors, the number of canopy photons, and solar conditions significantly impact land cover classification for a complex terrain area.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Retrieving building height in urban areas using ICESat-2 photon-counting LiDAR data
    Lao, Jieying
    Wang, Cheng
    Zhu, Xiaoxiao
    Xi, Xiaohuan
    Nie, Sheng
    Wang, Jinliang
    Cheng, Feng
    Zhou, Guoqing
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 104
  • [12] Inferring Lake Ice Status Using ICESat-2 Photon Data
    Dandabathula G.
    Bera A.K.
    Sitiraju S.R.
    Jha C.S.
    Remote Sensing in Earth Systems Sciences, 2021, 4 (4) : 264 - 279
  • [13] Land Cover Classification Using ICESat/GLAS Full Waveform Data
    S. Ghosh
    S. Nandy
    S. Patra
    S. P. S. Kushwaha
    A. Senthil Kumar
    V. K. Dadhwal
    Journal of the Indian Society of Remote Sensing, 2017, 45 : 327 - 335
  • [14] Land Cover Classification Using Landsat 7 Data for Land Sustainability
    Lavanya, K.
    Gondchar, Abhilasha
    Mathew, Irene Maria
    Sarda, Sumitkumar
    Ananda Kumar, S.
    Mahendran, Anand
    Perera, Darshika G.
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 132 (01) : 679 - 697
  • [15] Land Cover Classification Using Landsat 7 Data for Land Sustainability
    K. Lavanya
    Abhilasha Gondchar
    Irene Maria Mathew
    Sumitkumar Sarda
    S. Ananda Kumar
    Anand Mahendran
    Darshika G. Perera
    Wireless Personal Communications, 2023, 132 : 679 - 697
  • [16] Land Cover Classification Using ICESat/GLAS Full Waveform Data
    Ghosh, S.
    Nandy, S.
    Patra, S.
    Kushwaha, S. P. S.
    Kumar, A. Senthil
    Dadhwal, V. K.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2017, 45 (02) : 327 - 335
  • [17] Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms
    Ghayour, Laleh
    Neshat, Aminreza
    Paryani, Sina
    Shahabi, Himan
    Shirzadi, Ataollah
    Chen, Wei
    Al-Ansari, Nadhir
    Geertsema, Marten
    Pourmehdi Amiri, Mehdi
    Gholamnia, Mehdi
    Dou, Jie
    Ahmad, Anuar
    REMOTE SENSING, 2021, 13 (07)
  • [18] Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission
    Herzfeld, Ute Christina
    McDonald, Brian W.
    Wallin, Bruce F.
    Neumann, Thomas A.
    Markus, Thorsten
    Brenner, Anita
    Field, Christopher
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (04): : 2109 - 2125
  • [19] MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development
    Brunt, Kelly M.
    Neumann, Thomas A.
    Amundson, Jason M.
    Kavanaugh, Jeffrey L.
    Moussavi, Mahsa S.
    Walsh, Kaitlin M.
    Cook, William B.
    Markus, Thorsten
    CRYOSPHERE, 2016, 10 (04): : 1707 - 1719
  • [20] A Density and Distance-Based Method for ICESat-2 Photon-Counting Data Denoising
    Zheng, Xuebo
    Hou, Chunping
    Huang, Meiyan
    Ma, Dan
    Li, Menglong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20