Land Cover Classification Using Landsat 7 Data for Land Sustainability

被引:0
|
作者
Lavanya, K. [1 ]
Gondchar, Abhilasha [1 ]
Mathew, Irene Maria [1 ]
Sarda, Sumitkumar [1 ]
Ananda Kumar, S. [1 ]
Mahendran, Anand [2 ]
Perera, Darshika G. [3 ]
机构
[1] Vellore Inst Technol, SCOPE, Vellore, India
[2] HSE Univ, Lab Theoret Comp Sci, Moscow, Russia
[3] Univ Colorado, Springs, CO USA
关键词
Land use land cover; Landsat; 7; QGIS; Classification-maximum and minimum likelihood;
D O I
10.1007/s11277-023-10631-w
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Detection of land use/land cover with the help of satellite image data and extraction of geographical features is a challenging problem as it requires continuous monitoring and accurate processing of the images. For environment change management, Land Use Land Cover (LULC) information plays a vital part. This paper proposes a way for the detection of LULC types such as buildings, vegetation, water bodies, etc. with the use of Landsat 7 multispectral satellite images in Sabarmati Riverfront region, Ahmedabad, India. Landsat images have become valuable as well as a free resource as it provides the factors like high resolution, temporal distribution, and availability for the detection of LULC. Further, the use of the QGIS tool based Maximum/Minimum likelihood classification helps to explore and object-based image classification. Thus, Continuous monitoring over the same area will give the difference of LULC resulting in rapid or slower growth of land cover land use region. The proposed method gave a high rate of success and approximate 70-80% accurate results of LULC over period of 2014-2022.
引用
收藏
页码:679 / 697
页数:19
相关论文
共 50 条
  • [1] Land Cover Classification Using Landsat 7 Data for Land Sustainability
    K. Lavanya
    Abhilasha Gondchar
    Irene Maria Mathew
    Sumitkumar Sarda
    S. Ananda Kumar
    Anand Mahendran
    Darshika G. Perera
    Wireless Personal Communications, 2023, 132 : 679 - 697
  • [2] Crop and land cover classification in Iran using Landsat 7 imagery
    Akbari, M.
    Mamanpoush, A. R.
    Gieske, A.
    Miranzadeh, M.
    Torabi, M.
    Salemi, H. R.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (19) : 4117 - 4135
  • [3] Data mining applied for land cover classification using Landsat 8
    dos Santos, Guilherme Domingues
    Francisco, Cristiane Nunes
    de Almeida, Claudia Maria
    BOLETIM DE CIENCIAS GEODESICAS, 2015, 21 (04): : 706 - 720
  • [4] Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China
    Jia, Kun
    Wei, Xiangqin
    Gu, Xingfa
    Yao, Yunjun
    Xie, Xianhong
    Li, Bin
    GEOCARTO INTERNATIONAL, 2014, 29 (08) : 941 - 951
  • [5] Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data Using Post-Classification Enhancement
    Manandhar, Ramita
    Odeh, Inakwu O. A.
    Ancev, Tiho
    REMOTE SENSING, 2009, 1 (03) : 330 - 344
  • [6] Optimal Bayesian classifier for land cover classification using Landsat TM data
    Zhu, YX
    Zhao, YX
    Palaniappan, K
    Zhou, XB
    Zhuang, XH
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 447 - 450
  • [7] Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data in an Agricultural Watershed
    Dash, Padmanava
    Sanders, Scott L.
    Parajuli, Prem
    Ouyang, Ying
    REMOTE SENSING, 2023, 15 (16)
  • [8] Land use/land cover classification of the vicinity of Lake Chad using NigeriaSat-1 and Landsat data
    Rakiya A. Babamaaji
    Jejung Lee
    Environmental Earth Sciences, 2014, 71 : 4309 - 4317
  • [9] Land use/land cover classification of the vicinity of Lake Chad using NigeriaSat-1 and Landsat data
    Babamaaji, Rakiya A.
    Lee, Jejung
    ENVIRONMENTAL EARTH SCIENCES, 2014, 71 (10) : 4309 - 4317
  • [10] Continuous change detection and classification of land cover using all available Landsat data
    Zhu, Zhe
    Woodcock, Curtis E.
    REMOTE SENSING OF ENVIRONMENT, 2014, 144 : 152 - 171