Land Cover Classification Using ICESat-2 Photon Counting Data and Landsat 8 OLI Data: A Case Study in Yunnan Province, China

被引:7
|
作者
Pan, Jiya [1 ,2 ,3 ]
Wang, Cheng [4 ]
Wang, Jinliang [1 ,2 ,3 ]
Gao, Fan [5 ]
Liu, Qianwei [1 ,2 ,3 ]
Zhang, Jianpeng [1 ,2 ,3 ]
Deng, Yuncheng [1 ,2 ,3 ]
机构
[1] Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China
[2] Key Lab Resources & Environm Remote Sensing Univ, Kunming 650500, Yunnan, Peoples R China
[3] Ctr Geospatial Informat Engn & Technol Yunnan Pro, Kunming 650500, Yunnan, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[5] Yunnan Minzu Univ, Org Dept, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing; Photonics; Feature extraction; Earth; Artificial satellites; Correlation; Random forests; Feature selection; Ice; Cloud; and land Elevation Satellite-2 (ICESat-2); land cover classification; Landsat; 8; random forest (RF); ICESAT/GLAS;
D O I
10.1109/LGRS.2022.3209725
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Land cover classification is important for effectively protecting and developing land resources. This study investigates the joint use of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) data and Landsat 8 Operational Land Imager (OLI) data in land cover classification with random forest (RF) in Yunnan province, China, to explore the application potential of photon counting light detection and ranging (LiDAR) data in land cover classification. The contributions of this letter are: 1) the joint use of ICESat-2 and Landsat 8 image datasets can provide better land cover classification accuracy, achieving 10% and 3% accuracy gains for five types (forest/low-vegetation/water/construction-land/barren) and four types (vegetation/water/construction-land/barren)of land cover, respectively; 2) the proposed feature selection improves the overall accuracy by 1.5% and 1% for five and four land cover types, respectively; 3) the accuracy of the land cover classification reached 82% and 98% for five and four types of land cover; and 4) the terrain factors, the number of canopy photons, and solar conditions significantly impact land cover classification for a complex terrain area.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Performance Analysis of Airborne Photon-Counting Lidar Data in Preparation for the ICESat-2 Mission
    Magruder, Lori A.
    Brunt, Kelly M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05): : 2911 - 2918
  • [22] Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data
    Popescu, S. C.
    Zhou, T.
    Nelson, R.
    Neuenschwande, A.
    Sheridan, R.
    Narine, L.
    Walsh, K. M.
    REMOTE SENSING OF ENVIRONMENT, 2018, 208 : 154 - 170
  • [23] Fine-Resolution Forest Height Estimation by Integrating ICESat-2 and Landsat 8 OLI Data with a Spatial Downscaling Method for Aboveground Biomass Quantification
    Wang, Yingxuan
    Peng, Yuning
    Hu, Xudong
    Zhang, Penglin
    FORESTS, 2023, 14 (07):
  • [24] Assessment of land cover changes in Lampedusa Island (Italy) using Landsat TM and OLI data
    Mei, Alessandro
    Manzo, Ciro
    Fontinovo, Giuliano
    Bassani, Cristiana
    Allegrini, Alessia
    Petracchini, Francesco
    JOURNAL OF AFRICAN EARTH SCIENCES, 2016, 122 : 15 - 24
  • [25] A Multi-Level Auto-Adaptive Noise-Filtering Algorithm for Land ICESat-2 Photon-Counting Data
    Liu, Jun
    Liu, Jingyun
    Xie, Huan
    Ye, Dan
    Li, Peinan
    REMOTE SENSING, 2023, 15 (21)
  • [26] Adaptive denoising and classification algorithms for ICESat-2 airborne experimental photon cloud data of 2018
    Qin L.
    Xing Y.
    Huang J.
    Ma J.
    An L.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (12): : 1476 - 1487
  • [27] Estimation of biomass burning emissions by integrating ICESat-2, Landsat 8, and Sentinel-1 data
    Liu, Meng
    Popescu, Sorin
    REMOTE SENSING OF ENVIRONMENT, 2022, 280
  • [28] Denoising and classification of urban ICESat-2 photon data fused with Sentinel-2 spectral images
    Duan, Jingjing
    Wang, Hongtao
    Wang, Cheng
    Nie, Sheng
    Yang, Xuebo
    Xi, Xiaohuan
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (02) : 4346 - 4367
  • [29] A Comparison and Review of Surface Detection Methods Using MBL, MABEL, and ICESat-2 Photon-Counting Laser Altimetry Data
    Xie, Huan
    Xu, Qi
    Ye, Dan
    Jia, Jianghao
    Sun, Yuan
    Huang, Peiqi
    Li, Ming
    Liu, Shijie
    Xie, Feng
    Hao, Xiaolong
    Tong, Xiaohua
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 7604 - 7623
  • [30] An optimized denoising method for ICESat-2 photon-counting data considering heterogeneous density and weak connectivity
    Huang, Guoan
    Dong, Zhipeng
    Liu, Yanxiong
    Chen, Yilan
    Li, Jie
    Wang, Yanhong
    Meng, Wenjun
    OPTICS EXPRESS, 2023, 31 (25) : 41496 - 41517