For a knot K the cube number is a knot invariant defined to be the smallest it for which there is a cube diagram of size n for K. There is also a Legendrian version of this invariant called the Legendrian cube number. We will show that the Legendrian cube number distinguishes the Legendrian left hand torus knots with maximal Thurston-Bennequin number and maximal rotation number from the Legendrian left hand torus knots with maximal Thurston-Bennequin number and minimal rotation number. (C) 2011 Elsevier B.V. All rights reserved.
机构:
Univ Econ Varna, 77 Knyaz Boris I St, Varna 9000, BulgariaUniv Econ Varna, 77 Knyaz Boris I St, Varna 9000, Bulgaria
Miryanov, Radan
Chalakova, Katya
论文数: 0引用数: 0
h-index: 0
机构:
Math High Sch Ivan Vazov Dimitrovgrad, 1 Kliment Ohridski St, Dimitrovgrad 6400, BulgariaUniv Econ Varna, 77 Knyaz Boris I St, Varna 9000, Bulgaria
Chalakova, Katya
MATHEMATICS AND INFORMATICS,
2019,
62
(03):
: 284
-
289
机构:
IPICYT, Div Matemat Aplicadas, Camino Presa San Jose 2055, San Luis Potosi 78216, Slp, MexicoIPICYT, Div Matemat Aplicadas, Camino Presa San Jose 2055, San Luis Potosi 78216, Slp, Mexico
机构:
Chonbuk Natl Univ, Dept Math, Jeonju 561756, South Korea
Chonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 561756, South KoreaChonbuk Natl Univ, Dept Math, Jeonju 561756, South Korea