An infinite family of Legendrian torus knots distinguished by cube number

被引:2
|
作者
McCarty, Ben [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70817 USA
关键词
Legendrian; Cube diagram; Knot;
D O I
10.1016/j.topol.2011.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a knot K the cube number is a knot invariant defined to be the smallest it for which there is a cube diagram of size n for K. There is also a Legendrian version of this invariant called the Legendrian cube number. We will show that the Legendrian cube number distinguishes the Legendrian left hand torus knots with maximal Thurston-Bennequin number and maximal rotation number from the Legendrian left hand torus knots with maximal Thurston-Bennequin number and minimal rotation number. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:162 / 174
页数:13
相关论文
共 43 条
  • [41] An infinite family of subcubic graphs with unbounded packing chromatic number
    Bresar, Bostjan
    Ferme, Jasmina
    DISCRETE MATHEMATICS, 2018, 341 (08) : 2337 - 2342
  • [42] An infinite family of chiral, non-slice, non-alternating hyperbolic knots with vanishing Upsilon invariants
    Teragaito, Masakazu
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (01):
  • [43] The number of spanning trees of an infinite family of outerplanar, small-world and self-similar graphs
    Comellas, Francesc
    Miralles, Alicia
    Liu, Hongxiao
    Zhang, Zhongzhi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (12) : 2803 - 2806