Interpolation on the torus using sk-splines with number theoretic knots

被引:4
|
作者
Gomes, SM [1 ]
Kushpel, AK [1 ]
Levesley, J [1 ]
Ragozin, DL [1 ]
机构
[1] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jath.1998.3278
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a fixed, continuous, periodic kernel K, an sk-spline is a function of the form sk(x) = c(o) + Sigma(i=1)(n) c(i)K(x - x(i)). In this paper we consider a generalization of the univariate sk-spline to the d-dimensional torus (d greater than or equal to 2), and give almost optimal error estimates of the same order, in power scale, as best trigonometric approximation on Sobolev's classes in L-q. An important component of our method is that the interpolation nodes are generated using number theoretic ideas. (C) 1999 Academic Press.
引用
收藏
页码:56 / 71
页数:16
相关论文
共 50 条