Experimental estimation of the quantum Fisher information from randomized measurements

被引:40
|
作者
Yu, Min [1 ]
Li, Dongxiao [1 ]
Wang, Jingcheng [1 ]
Chu, Yaoming [1 ]
Yang, Pengcheng [1 ]
Gong, Musang [1 ]
Goldman, Nathan [2 ]
Cai, Jianming [1 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Int Joint Lab Quantum Sensing & Quantum Metrol, Wuhan 430074, Peoples R China
[2] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, CP 231,Campus Plaine, B-1050 Brussels, Belgium
[3] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[4] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 04期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ENTANGLEMENT; SPIN;
D O I
10.1103/PhysRevResearch.3.043122
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics. It quantifies the metrological potential of quantum states in quantum parameter estimation measurements, and is intrinsically related to quantum geometry and multipartite entanglement of many-body systems. Using a nitrogen-vacancy center spin in diamond, we experimentally demonstrate a randomized-measurement method to extract the QFI of the qubit, for both pure and mixed states. We then apply this scheme to a 4-qubit state, using a superconducting quantum computer, and show that it provides access to the sub-QFI, which sets a lower bound on the QFI for general mixed states. We numerically study the scaling of statistical error, considering N-qubit states, to illustrate the advantage of our randomized-measurement approach in estimating the QFI and multipartite entanglement. Our results highlight the general applicability of our method to different quantum platforms, including solid-state spin systems, superconducting quantum computers, and trapped ions.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Quantum Fisher information with coherence
    Hradil, Zdenek
    Rehacek, Jaroslav
    Sanchez-Soto, Luis
    Englert, Berthold-Georg
    OPTICA, 2019, 6 (11): : 1437 - 1440
  • [32] Quantum interference and Fisher information
    Hradil, Z
    Rehácek, J
    PHYSICS LETTERS A, 2005, 334 (04) : 267 - 272
  • [33] On the realization of quantum Fisher information
    Saha, Aparna
    Talukdar, B.
    Chatterjee, Supriya
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (02)
  • [34] INTRODUCTION TO QUANTUM FISHER INFORMATION
    Petz, D.
    Ghinea, C.
    QUANTUM PROBABILITY AND RELATED TOPICS, 2011, 27 : 261 - 281
  • [35] Effects of partial measurements on quantum resources and quantum Fisher information of a teleported state in a relativistic scenario
    Jafarzadeh, M.
    Rangani Jahromi, H.
    Amniat-Talab, M.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2239):
  • [36] Fisher information in quantum statistics
    Barndorff-Nielsen, OE
    Gill, RD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (24): : 4481 - 4490
  • [37] Inequalities for quantum Fisher information
    Gibilisco, Paolo
    Imparato, Daniele
    Isola, Tommaso
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (01) : 317 - 327
  • [38] Broadcasting quantum Fisher information
    Lu, Xiao-Ming
    Sun, Zhe
    Wang, Xiaoguang
    Luo, Shunlong
    Oh, C. H.
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [39] Enhanced Estimation of Quantum Properties with Common Randomized Measurements
    Vermersch, Benoit
    Rath, Aniket
    Sundar, Bharathan
    Branciard, Cyril
    Preskill, John
    Elben, Andreas
    PRX QUANTUM, 2024, 5 (01):
  • [40] Entanglement-assisted quantum parameter estimation from a noisy qubit pair: A Fisher information analysis
    Chapeau-Blondeau, Francois
    PHYSICS LETTERS A, 2017, 381 (16) : 1369 - 1378