Experimental estimation of the quantum Fisher information from randomized measurements

被引:40
|
作者
Yu, Min [1 ]
Li, Dongxiao [1 ]
Wang, Jingcheng [1 ]
Chu, Yaoming [1 ]
Yang, Pengcheng [1 ]
Gong, Musang [1 ]
Goldman, Nathan [2 ]
Cai, Jianming [1 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Int Joint Lab Quantum Sensing & Quantum Metrol, Wuhan 430074, Peoples R China
[2] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, CP 231,Campus Plaine, B-1050 Brussels, Belgium
[3] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[4] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 04期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ENTANGLEMENT; SPIN;
D O I
10.1103/PhysRevResearch.3.043122
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics. It quantifies the metrological potential of quantum states in quantum parameter estimation measurements, and is intrinsically related to quantum geometry and multipartite entanglement of many-body systems. Using a nitrogen-vacancy center spin in diamond, we experimentally demonstrate a randomized-measurement method to extract the QFI of the qubit, for both pure and mixed states. We then apply this scheme to a 4-qubit state, using a superconducting quantum computer, and show that it provides access to the sub-QFI, which sets a lower bound on the QFI for general mixed states. We numerically study the scaling of statistical error, considering N-qubit states, to illustrate the advantage of our randomized-measurement approach in estimating the QFI and multipartite entanglement. Our results highlight the general applicability of our method to different quantum platforms, including solid-state spin systems, superconducting quantum computers, and trapped ions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Quantum Fisher information of phase estimation in the presence of indefinite causal order
    Ban, Masashi
    PHYSICS LETTERS A, 2023, 468
  • [22] Maximal quantum Fisher information for phase estimation without initial parity
    Yu, Xu
    Zhao, Xiang
    Shen, Luyi
    Shao, Yanyan
    Liu, Jing
    Wang, Xiaoguang
    OPTICS EXPRESS, 2018, 26 (13): : 16292 - 16302
  • [23] Quantum Fisher information and parameter estimation in non-Hermitian Hamiltonians
    Li, Jing
    Ding, Hai-Tao
    Zhang, Dan-Wei
    ACTA PHYSICA SINICA, 2023, 72 (20)
  • [24] Estimation of pulsed driven qubit parameters via quantum Fisher information
    Metwally, N.
    Hassan, S. S.
    LASER PHYSICS LETTERS, 2017, 14 (11)
  • [25] Nonparametric estimation of Fisher information from real data
    Har-Shemesh, Omri
    Quax, Rick
    Minano, Borja
    Hoekstra, Alfons G.
    Sloot, Peter M. A.
    PHYSICAL REVIEW E, 2016, 93 (02)
  • [26] Quantum and Fisher information from the Husimi and related distributions
    Slater, PB
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (02)
  • [27] Fisher Information Neural Estimation
    Tran Trong Duy
    Nguyen, Ly, V
    Viet-Dung Nguyen
    Nguyen Linh Trung
    Abed-Meraim, Karim
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2111 - 2115
  • [28] On Nonparametric Estimation of the Fisher Information
    Cao, Wei
    Dytso, Alex
    Fauss, Michael
    Poor, H. Vincent
    Feng, Gang
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2216 - 2221
  • [29] ON COVARIANCE AND QUANTUM FISHER INFORMATION
    Luo, S.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2009, 53 (02) : 329 - U151
  • [30] Continuity of the quantum Fisher information
    Rezakhani, A. T.
    Hassani, M.
    Alipour, S.
    PHYSICAL REVIEW A, 2019, 100 (03)