Experimental estimation of the quantum Fisher information from randomized measurements

被引:40
|
作者
Yu, Min [1 ]
Li, Dongxiao [1 ]
Wang, Jingcheng [1 ]
Chu, Yaoming [1 ]
Yang, Pengcheng [1 ]
Gong, Musang [1 ]
Goldman, Nathan [2 ]
Cai, Jianming [1 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Int Joint Lab Quantum Sensing & Quantum Metrol, Wuhan 430074, Peoples R China
[2] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, CP 231,Campus Plaine, B-1050 Brussels, Belgium
[3] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[4] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 04期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ENTANGLEMENT; SPIN;
D O I
10.1103/PhysRevResearch.3.043122
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics. It quantifies the metrological potential of quantum states in quantum parameter estimation measurements, and is intrinsically related to quantum geometry and multipartite entanglement of many-body systems. Using a nitrogen-vacancy center spin in diamond, we experimentally demonstrate a randomized-measurement method to extract the QFI of the qubit, for both pure and mixed states. We then apply this scheme to a 4-qubit state, using a superconducting quantum computer, and show that it provides access to the sub-QFI, which sets a lower bound on the QFI for general mixed states. We numerically study the scaling of statistical error, considering N-qubit states, to illustrate the advantage of our randomized-measurement approach in estimating the QFI and multipartite entanglement. Our results highlight the general applicability of our method to different quantum platforms, including solid-state spin systems, superconducting quantum computers, and trapped ions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Quantum Fisher Information from Randomized Measurements
    Rath, Aniket
    Branciard, Cyril
    Minguzzi, Anna
    Vermersch, Benoit
    PHYSICAL REVIEW LETTERS, 2021, 127 (26)
  • [2] Fisher information from stochastic quantum measurements
    Mueller, Matthias M.
    Gherardini, Stefano
    Smerzi, Augusto
    Caruso, Filippo
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [3] Robust Estimation of the Quantum Fisher Information on a Quantum Processor
    Vitale, Vittorio
    Rath, Aniket
    Jurcevic, Petar
    Elben, Andreas
    Branciard, Cyril
    Vermersch, Benoit
    PRX QUANTUM, 2024, 5 (03):
  • [4] Quantum Fisher information matrix and multiparameter estimation
    Liu, Jing
    Yuan, Haidong
    Lu, Xiao-Ming
    Wang, Xiaoguang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (02)
  • [5] Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation
    Hayashi, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (36): : 7689 - 7727
  • [6] Enhancing quantum Fisher information by utilizing uncollapsing measurements
    He, Juan
    Ding, Zhi-Yong
    Ye, Liu
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 457 : 598 - 606
  • [7] Optimal witnessing of the quantum Fisher information with few measurements
    Apellaniz, Iagoba
    Kleinmann, Matthias
    Guehne, Otfried
    Toth, Geza
    PHYSICAL REVIEW A, 2017, 95 (03)
  • [8] Enhancing teleportation of quantum Fisher information by partial measurements
    Xiao, Xing
    Yao, Yao
    Zhong, Wo-Jun
    Li, Yan-Ling
    Xie, Ying-Mao
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [9] Fisher-information susceptibility for multiparameter quantum estimation
    Albarelli, Francesco
    Gianani, Ilaria
    Genoni, Marco G.
    Barbieri, Marco
    PHYSICAL REVIEW A, 2024, 110 (03)
  • [10] Enhancing quantum coherence and quantum Fisher information by quantum partially collapsing measurements
    Liu, Zhi
    Qiu, Liang
    Pan, Fei
    QUANTUM INFORMATION PROCESSING, 2017, 16 (04)