Bohr's Phenomenon for Some Univalent Harmonic Functions

被引:0
|
作者
Singla, Chinu [1 ]
Gupta, Sushma [1 ]
Singh, Sukhjit [1 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Math, Longowal 148106, India
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2022年 / 62卷 / 02期
关键词
Bohr radius; harmonic univalent functions; convex in one direction;
D O I
10.5666/KMJ.2022.62.2.243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1914, Bohr proved that there is an r(0) is an element of (0, 1) such that if a power series Sigma(infinity)(m=0) c(m) z(m) is convergent in the open unit disc and vertical bar Sigma(infinity)(m=0) c(m) z(m)vertical bar < 1 then, Sigma(infinity)(m=0) vertical bar c(m) z(m)vertical bar < for vertical bar z vertical bar < r(0). The largest value of such r(0) is called the Bohr radius. In this article, we find Bohr radius for some univalent harmonic mappings having different dilatations. We also compute the Bohr radius for functions that are convex in one direction.
引用
收藏
页码:243 / 256
页数:14
相关论文
共 50 条
  • [1] HARMONIC ANALOGUE OF BOHR PHENOMENON OF CERTAIN CLASSES OF UNIVALENT AND ANALYTIC FUNCTIONS
    Ahamed, Molla Basir
    Allu, Vasudevarao
    MATHEMATICA SCANDINAVICA, 2023, 129 (03) : 481 - 506
  • [2] A Bohr phenomenon for α-harmonic functions
    Zhou, Lifang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [3] Bohr phenomenon for subordinating families of certain univalent functions
    Bhowmik, Bappaditya
    Das, Nilanjan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (02) : 1087 - 1098
  • [4] Bohr phenomenon for harmonic Bloch functions
    Allu, V.
    Halder, H.
    ANALYSIS MATHEMATICA, 2025, 51 (01) : 35 - 62
  • [5] Bohr Phenomenon for Locally Univalent Functions and Logarithmic Power Series
    Bhowmik, Bappaditya
    Das, Nilanjan
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (04) : 729 - 745
  • [6] Bohr Phenomenon for Locally Univalent Functions and Logarithmic Power Series
    Bappaditya Bhowmik
    Nilanjan Das
    Computational Methods and Function Theory, 2019, 19 : 729 - 745
  • [7] Improved Bohr inequalities for certain class of harmonic univalent functions
    Ahamed, Molla Basir
    Allu, Vasudevarao
    Halder, Himadri
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (02) : 267 - 290
  • [8] Improved Bohr's inequality for locally univalent harmonic mappings
    Evdoridis, Stavros
    Ponnusamy, Saminathan
    Rasila, Antti
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (01): : 201 - 213
  • [9] BOHR PHENOMENON FOR THE SPECIAL FAMILY OF ANALYTIC FUNCTIONS AND HARMONIC MAPPINGS
    Alkhaleefah, S. A.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (03): : 3 - 13
  • [10] Some Results for a Family of Harmonic Univalent Functions
    Liangpeng XIONG
    Yaqian WANG
    JournalofMathematicalResearchwithApplications, 2022, 42 (05) : 499 - 510