A multiscale a posteriori error estimate

被引:17
|
作者
Araya, R
Valentin, F
机构
[1] Univ Concepcion, Dept Ingn Matemat, GI2MA, Concepcion, Chile
[2] LNCC, BR-25651070 Petropolis, RJ, Brazil
关键词
hierarchic estimator; reaction-diffusion equation; multiscale functions; boundary layer;
D O I
10.1016/j.cma.2004.07.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a hierarchic a posteriori error estimate for singularly perturbed reaction-diffusion problems. The estimator is based on a Petrov-Galerkin method in which the trial space is enriched with nonpolynomial functions or multiscale functions. We study the equivalence between the a posteriori estimate and the exact error in the energy norm. Moreover, we prove a relationship between the hierarchic estimator and an explicit residual estimator. The approach provides accurate estimates for the boundary layer regions which is confirmed by numerical experiments. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:2077 / 2094
页数:18
相关论文
共 50 条
  • [31] Derivative recovery and a posteriori error estimate for extended finite elements
    Bordas, Stephane
    Duflot, Marc
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (35-36) : 3381 - 3399
  • [32] A Posteriori Error Estimation for Computational Fluid Dynamics: The Variational Multiscale Approach
    Hauke, Guillermo
    Doweidar, Mohamed H.
    Fuster, Daniel
    MULTISCALE METHODS IN COMPUTATIONAL MECHANICS: PROGRESS AND ACCOMPLISHMENTS, 2011, 55 : 19 - 38
  • [33] ROBUST A POSTERIORI ERROR CONTROL AND ADAPTIVITY FOR MULTISCALE, MULTINUMERICS, AND MORTAR COUPLING
    Pencheva, Gergina V.
    Vohralik, Martin
    Wheeler, Mary F.
    Wildey, Tim
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 526 - 554
  • [34] A posteriori error analysis of multiscale operator decomposition methods for multiphysics models
    Estep, D.
    Carey, V.
    Ginting, V.
    Tavener, S.
    Wildey, T.
    SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
  • [35] RECENT ADVANCES ON EXPLICIT VARIATIONAL MULTISCALE A POSTERIORI ERROR ESTIMATION FOR SYSTEMS
    Hauke, Guillermo
    Irisarri, Diego
    Lizarraga, Fernando
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2014, 11 (02) : 372 - 384
  • [36] A posteriori error estimation based on numerical realization of the variational multiscale method
    ElSheikh, A. H.
    Chidiac, S. E.
    Smith, W. S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (45-48) : 3637 - 3656
  • [37] An improved a posteriori error estimate for the Galerkin spectral method in one dimension
    Zhou, Jianwei
    Yang, Danping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (02) : 334 - 340
  • [38] Residual-type a posteriori error estimate for parabolic obstacle problems
    李京梁
    马和平
    Journal of Shanghai University, 2006, (06) : 473 - 478
  • [39] An a posteriori error estimate and a comparison theorem for the nonconforming P 1 element
    Braess, Dietrich
    CALCOLO, 2009, 46 (02) : 149 - 155
  • [40] Posteriori error estimate for the symmetric coupling of finite elements and boundary elements
    Carstensen, C.
    Computing (Vienna/New York), 1996, 57 (04): : 301 - 322