A posteriori error analysis of multiscale operator decomposition methods for multiphysics models

被引:9
|
作者
Estep, D. [1 ,2 ]
Carey, V. [1 ]
Ginting, V. [3 ]
Tavener, S. [1 ]
Wildey, T. [4 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[3] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
[4] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
D O I
10.1088/1742-6596/125/1/012075
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multiphysics, multiscale models present significant challenges in computing accurate solutions and for estimating the error in information computed from numerical solutions. In this paper, we describe recent advances in extending the techniques of a posteriori error analysis to multiscale operator decomposition solution methods. While the particulars of the analysis vary considerably with the problem, several key ideas underlie a general approach being developed to treat operator decomposition multiscale methods. We explain these ideas in the context of three specific examples.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] An A Posteriori Analysis of Multiscale Operator Decomposition
    Ginting, Victor
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 359 - 367
  • [2] A POSTERIORI ANALYSIS AND ADAPTIVE ERROR CONTROL FOR MULTISCALE OPERATOR DECOMPOSITION SOLUTION OF ELLIPTIC SYSTEMS I: TRIANGULAR SYSTEMS
    Carey, V.
    Estep, D.
    Tavener, S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (01) : 740 - 761
  • [3] A posteriori error analysis for Schwarz overlapping domain decomposition methods
    Chaudhry, Jehanzeb H.
    Estep, Donald
    Tavener, Simon J.
    BIT NUMERICAL MATHEMATICS, 2021, 61 (04) : 1153 - 1191
  • [4] A posteriori error analysis for Schwarz overlapping domain decomposition methods
    Jehanzeb H. Chaudhry
    Donald Estep
    Simon J. Tavener
    BIT Numerical Mathematics, 2021, 61 : 1153 - 1191
  • [5] An a posteriori - A priori analysis of multiscale operator splitting
    Estep, D.
    Ginting, V.
    Ropp, D.
    Shadid, J. N.
    Tavener, S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1116 - 1146
  • [6] A posteriori error estimation and adaptive mesh refinement for a multiscale operator decomposition approach to fluid-solid heat transfer
    Estep, Donald
    Tavener, Simon
    Wildey, Tim
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (11) : 4143 - 4158
  • [7] A Posteriori Error Analysis of Penalty Domain Decomposition Methods for Linear Elliptic Problems
    Bernardi, C.
    Chacon Rebollo, T.
    Chacon Vera, E.
    Franco Coronil, D.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 373 - +
  • [8] A multiscale a posteriori error estimate
    Araya, R
    Valentin, F
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (18-20) : 2077 - 2094
  • [9] A posteriori analysis and adaptive error control for operator decomposition solution of coupled semilinear elliptic systems
    Carey, V.
    Estep, D.
    Tavener, S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 94 (09) : 826 - 849
  • [10] A posteriori error analysis for unstable models
    Bakushinsky, Anatoly B.
    Smirnova, Alexandra
    Liu, Hui
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2012, 20 (04): : 411 - 428