A posteriori error analysis for unstable models

被引:5
|
作者
Bakushinsky, Anatoly B. [1 ]
Smirnova, Alexandra [2 ]
Liu, Hui [2 ]
机构
[1] Russian Acad Sci, Inst Syst Anal, Moscow 117312, Russia
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
来源
基金
美国国家科学基金会;
关键词
A posteriori error estimate; nonlinear ill-posed problem; iterative regularization; inverse magnetometry problem; NONLINEAR OPERATOR-EQUATIONS; GAUSS-NEWTON METHOD; CONVERGENCE-RATES;
D O I
10.1515/jip-2012-0006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the possibility of a posteriori error estimates for linear and nonlinear ill-posed operator equations. Given an auxiliary finite-dimensional problem Phi(w) = 0, Phi : D-Phi subset of E-N -> E-M that approximates the original infinite model F(x) = 0, F : D-F subset of X -> Y with a certain level of accuracy, we try to estimate the distance between z, an approximate solution to Phi(w) = 0, and x*, the exact solution to F(x) = 0. The problem Phi(w) = 0 is assumed to accumulate different sources of error (discretization, measurements, etc.), and the computed solution z is assumed to satisfy the equation Phi(w) = 0 within a nonzero tolerance delta. We conduct both a theoretical and numerical study of a posteriori error analysis.
引用
收藏
页码:411 / 428
页数:18
相关论文
共 50 条
  • [1] Robustness in a posteriori error analysis for FEM flow models
    Stefano Berrone
    Numerische Mathematik, 2002, 91 : 389 - 422
  • [2] Robustness in a posteriori error analysis for FEM flow models
    Berrone, S
    NUMERISCHE MATHEMATIK, 2002, 91 (03) : 389 - 422
  • [3] A posteriori error analysis of multiscale operator decomposition methods for multiphysics models
    Estep, D.
    Carey, V.
    Ginting, V.
    Tavener, S.
    Wildey, T.
    SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
  • [4] A POSTERIORI ERROR ESTIMATION FOR SUBGRID FLAMELET MODELS
    Bourlioux, Anne
    Ern, Alexandre
    Turbis, Pascal
    MULTISCALE MODELING & SIMULATION, 2010, 8 (02): : 481 - 497
  • [5] A POSTERIORI ERROR ANALYSIS OF THE METHOD OF CHARACTERISTICS
    Bernardi, Christine
    Hecht, Frederic
    Verfuerth, Ruediger
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (06): : 1355 - 1376
  • [6] A posteriori error analysis in radiative transfer
    Han, Weimin
    APPLICABLE ANALYSIS, 2015, 94 (12) : 2517 - 2534
  • [7] A POSTERIORI ERROR ANALYSIS OF FINITE ELEMENT METHOD FOR LINEAR NONLOCAL DIFFUSION AND PERIDYNAMIC MODELS
    Du, Qiang
    Ju, Lili
    Tian, Li
    Zhou, Kun
    MATHEMATICS OF COMPUTATION, 2013, 82 (284) : 1889 - 1922
  • [8] ` A posteriori error analysis for the conical diffraction problem
    Wang, Zhoufeng
    Zhang, Yunzhang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (05) : 993 - 1005
  • [9] A posteriori error analysis for the normal compliance problem
    Fernandez, J. R.
    Hild, P.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (1-2) : 64 - 73
  • [10] A posteriori error analysis for parabolic variational inequalities
    Moon, Kyoung-Sook
    Nochetto, Ricardo H.
    von Petersdorff, Tobias
    Zhang, Chen-Song
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (03): : 485 - 511