A POSTERIORI ERROR ANALYSIS OF FINITE ELEMENT METHOD FOR LINEAR NONLOCAL DIFFUSION AND PERIDYNAMIC MODELS

被引:62
|
作者
Du, Qiang [1 ]
Ju, Lili [2 ]
Tian, Li [1 ]
Zhou, Kun [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Peridynamic models; nonlocal diffusion; a posteriori error estimate; finite element; INTEGRAL-EQUATIONS; VECTOR CALCULUS; NAVIER EQUATION; CONVERGENCE;
D O I
10.1090/S0025-5718-2013-02708-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some results on a posteriori error analysis of finite element methods for solving linear nonlocal diffusion and bond-based peridynamic models. In particular, we aim to propose a general abstract frame work for a posteriori error analysis of the peridynamic problems. A posteriori error estimators are consequently prompted, the reliability and efficiency of the estimators are proved. Connections between nonlocal a posteriori error estimation and classical local estimation are studied within continuous finite element space. Numerical experiments (1D) are also given to test the theoretical conclusions.
引用
收藏
页码:1889 / 1922
页数:34
相关论文
共 50 条
  • [1] A CONVERGENT ADAPTIVE FINITE ELEMENT ALGORITHM FOR NONLOCAL DIFFUSION AND PERIDYNAMIC MODELS
    Du, Qiang
    Tian, Li
    Zhao, Xuying
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1211 - 1234
  • [2] A NOTE ON THE A POSTERIORI ERROR ANALYSIS FOR THE FINITE-ELEMENT METHOD
    GATICA, GN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (01) : 41 - 45
  • [3] Posteriori finite element error estimation for diffusion problems
    Adjerid, Slimane
    Belguendouz, Belkacem
    Flaherty, Joseph E.
    SIAM Journal on Scientific Computing, 21 (02): : 728 - 746
  • [4] A posteriori finite element error estimation for diffusion problems
    Adjerid, S
    Belguendouz, B
    Flaherty, JE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 728 - 746
  • [5] On a posteriori error estimates for the linear triangular finite element
    Jikun Zhao
    Shaochun Chen
    Calcolo, 2014, 51 : 287 - 304
  • [6] On a posteriori error estimates for the linear triangular finite element
    Zhao, Jikun
    Chen, Shaochun
    CALCOLO, 2014, 51 (02) : 287 - 304
  • [7] A posteriori error estimation in finite element analysis
    Ainsworth, M
    Oden, JT
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) : 1 - 88
  • [8] Pointwise a Posteriori Error Analysis of a Finite Element Method for the Signorini Problem
    Rohit Khandelwal
    Kamana Porwal
    Journal of Scientific Computing, 2022, 91
  • [9] Exact a posteriori error analysis of the least squares finite element method
    Liu, JL
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 116 (03) : 297 - 305
  • [10] Pointwise a Posteriori Error Analysis of a Finite Element Method for the Signorini Problem
    Khandelwal, Rohit
    Porwal, Kamana
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)