In this paper, we consider the possibility of a posteriori error estimates for linear and nonlinear ill-posed operator equations. Given an auxiliary finite-dimensional problem Phi(w) = 0, Phi : D-Phi subset of E-N -> E-M that approximates the original infinite model F(x) = 0, F : D-F subset of X -> Y with a certain level of accuracy, we try to estimate the distance between z, an approximate solution to Phi(w) = 0, and x*, the exact solution to F(x) = 0. The problem Phi(w) = 0 is assumed to accumulate different sources of error (discretization, measurements, etc.), and the computed solution z is assumed to satisfy the equation Phi(w) = 0 within a nonzero tolerance delta. We conduct both a theoretical and numerical study of a posteriori error analysis.
机构:
St Petersburg State Polytech Univ, Dept Appl Math, St Petersburg 195251, RussiaSt Petersburg State Polytech Univ, Dept Appl Math, St Petersburg 195251, Russia
机构:
Univ Pavia, Dipartimento Matemat F Casorati, Pavia, ItalyUniv Pavia, Dipartimento Matemat F Casorati, Pavia, Italy
Boffi, Daniele
Duran, Ricardo G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, IMAS, Fac Ciencias Exactas Nat, Dept Matemat,CONICET, RA-1428 Buenos Aires, DF, ArgentinaUniv Pavia, Dipartimento Matemat F Casorati, Pavia, Italy
Duran, Ricardo G.
Gardini, Francesca
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pavia, Dipartimento Matemat F Casorati, Pavia, ItalyUniv Pavia, Dipartimento Matemat F Casorati, Pavia, Italy
Gardini, Francesca
Gastaldi, Lucia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Brescia, DICATAM Sez Matemat, Brescia, ItalyUniv Pavia, Dipartimento Matemat F Casorati, Pavia, Italy