A posteriori analysis and adaptive error control for operator decomposition solution of coupled semilinear elliptic systems

被引:6
|
作者
Carey, V. [1 ]
Estep, D. [2 ]
Tavener, S. [1 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
基金
美国国家科学基金会; 美国国家航空航天局; 美国国家卫生研究院;
关键词
a posteriori error estimates; adjoint problem; dual problem; error estimates; finite element method; generalized Green's function; operator splitting; operator decomposition; coupled problems;
D O I
10.1002/nme.4482
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we develop an a posteriori error analysis for operator decomposition iteration methods applied to systems of coupled semilinear elliptic problems. The goal is to compute accurate error estimates that account for the combined effects arising from numerical approximation (discretization) and operator decomposition iteration. In an earlier paper, we considered triangular' systems that can be solved without iteration. In contrast, operator decomposition iterative methods for fully coupled systems involve an iterative solution technique. We construct an error estimate for the numerical approximation error that specifically addresses the propagation of error between iterates and provide a computable estimate for the iteration error arising because of the decomposition of the operator. Finally, we develop an adaptive discretization strategy to systematically reduce the discretization error.Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:826 / 849
页数:24
相关论文
共 50 条
  • [1] A POSTERIORI ANALYSIS AND ADAPTIVE ERROR CONTROL FOR MULTISCALE OPERATOR DECOMPOSITION SOLUTION OF ELLIPTIC SYSTEMS I: TRIANGULAR SYSTEMS
    Carey, V.
    Estep, D.
    Tavener, S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (01) : 740 - 761
  • [2] A posteriori error analysis of semilinear parabolic interface problems using elliptic reconstruction
    Sen Gupta, Jhuma
    Sinha, Rajen Kumar
    APPLICABLE ANALYSIS, 2018, 97 (04) : 552 - 570
  • [3] An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints
    Hintermueller, Michael
    Hoppe, Ronald H. W.
    Iliash, Yuri
    Kieweg, Michael
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (03) : 540 - 560
  • [4] A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind
    Bostan, V
    Han, WM
    Reddy, BD
    APPLIED NUMERICAL MATHEMATICS, 2005, 52 (01) : 13 - 38
  • [5] A posteriori error analysis of multiscale operator decomposition methods for multiphysics models
    Estep, D.
    Carey, V.
    Ginting, V.
    Tavener, S.
    Wildey, T.
    SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
  • [6] ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS
    Manohar, Ram
    Sinha, Rajen Kumar
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (02): : 147 - 176
  • [7] A Posteriori Error Analysis of Penalty Domain Decomposition Methods for Linear Elliptic Problems
    Bernardi, C.
    Chacon Rebollo, T.
    Chacon Vera, E.
    Franco Coronil, D.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 373 - +
  • [8] A posteriori error analysis of a cell-centered finite volume method for semilinear elliptic problems
    Estep, Don
    Pernice, Michael
    Pham, Du
    Tavener, Simon
    Wang, Haiying
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (02) : 459 - 472
  • [9] A posteriori error estimates for semilinear optimal control problems
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (05) : 2293 - 2322
  • [10] A Posteriori Error Estimates for Semilinear Boundary Control Problems
    Chen, Yanping
    Lu, Zuliang
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 455 - +