A posteriori analysis and adaptive error control for operator decomposition solution of coupled semilinear elliptic systems

被引:6
|
作者
Carey, V. [1 ]
Estep, D. [2 ]
Tavener, S. [1 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
基金
美国国家科学基金会; 美国国家航空航天局; 美国国家卫生研究院;
关键词
a posteriori error estimates; adjoint problem; dual problem; error estimates; finite element method; generalized Green's function; operator splitting; operator decomposition; coupled problems;
D O I
10.1002/nme.4482
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we develop an a posteriori error analysis for operator decomposition iteration methods applied to systems of coupled semilinear elliptic problems. The goal is to compute accurate error estimates that account for the combined effects arising from numerical approximation (discretization) and operator decomposition iteration. In an earlier paper, we considered triangular' systems that can be solved without iteration. In contrast, operator decomposition iterative methods for fully coupled systems involve an iterative solution technique. We construct an error estimate for the numerical approximation error that specifically addresses the propagation of error between iterates and provide a computable estimate for the iteration error arising because of the decomposition of the operator. Finally, we develop an adaptive discretization strategy to systematically reduce the discretization error.Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:826 / 849
页数:24
相关论文
共 50 条
  • [31] Uniqueness of the positive solution for a class of semilinear elliptic systems
    Cui, Renhao
    Wang, Yuwen
    Shi, Junping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (06) : 1710 - 1714
  • [32] A short perspective on a posteriori error control and adaptive discretizations
    Becker R.
    Bordas S.P.A.
    Chouly F.
    Omnes P.
    Advances in Applied Mechanics, 2024, 58 : 1 - 21
  • [33] A posteriori error estimation and adaptive mesh refinement for a multiscale operator decomposition approach to fluid-solid heat transfer
    Estep, Donald
    Tavener, Simon
    Wildey, Tim
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (11) : 4143 - 4158
  • [34] Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem
    Nadir Arada
    Eduardo Casas
    Fredi Tröltzsch
    Computational Optimization and Applications, 2002, 23 : 201 - 229
  • [35] Error estimates for the numerical approximation of a semilinear elliptic control problem
    Arada, N
    Casas, E
    Tröltzsch, F
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) : 201 - 229
  • [36] A POSTERIORI ERROR CONTROL FOR FOURTH-ORDER SEMILINEAR PROBLEMS WITH QUADRATIC NONLINEARITY
    Carstensen, Carsten
    Graessle, Benedikt
    Nataraj, Neela
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (02) : 919 - 945
  • [37] A posteriori error analysis for elliptic variational inequalities of the second kind
    Bostan, V
    Han, W
    Reddy, BD
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1867 - 1870
  • [38] A Posteriori Error Analysis for Nonconforming Approximations of an Anisotropic Elliptic Problem
    Achchab, Boujemaa
    Agouzal, Abdellatif
    Majdoubi, Adil
    Meskine, Driss
    Souissi, Ali
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (03) : 950 - 976
  • [39] A posteriori error analysis for elliptic pdes on domains with complicated structures
    Carsten Carstensen
    Stefan A. Sauter
    Numerische Mathematik, 2004, 96 : 691 - 721
  • [40] A posteriori error analysis for elliptic pdes on domains with complicated structures
    Carstensen, C
    Sauter, SA
    NUMERISCHE MATHEMATIK, 2004, 96 (04) : 691 - 721