A multiscale a posteriori error estimate

被引:17
|
作者
Araya, R
Valentin, F
机构
[1] Univ Concepcion, Dept Ingn Matemat, GI2MA, Concepcion, Chile
[2] LNCC, BR-25651070 Petropolis, RJ, Brazil
关键词
hierarchic estimator; reaction-diffusion equation; multiscale functions; boundary layer;
D O I
10.1016/j.cma.2004.07.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a hierarchic a posteriori error estimate for singularly perturbed reaction-diffusion problems. The estimator is based on a Petrov-Galerkin method in which the trial space is enriched with nonpolynomial functions or multiscale functions. We study the equivalence between the a posteriori estimate and the exact error in the energy norm. Moreover, we prove a relationship between the hierarchic estimator and an explicit residual estimator. The approach provides accurate estimates for the boundary layer regions which is confirmed by numerical experiments. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:2077 / 2094
页数:18
相关论文
共 50 条
  • [21] A posteriori error analysis of the heterogeneous multiscale method for homogenization problems
    Abdulle, Assyr
    Nonnenmacher, Achim
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (17-18) : 1081 - 1086
  • [22] ITERATIVE CORRECTIONS AND A POSTERIORI ERROR ESTIMATE FOR INTEGRAL-EQUATIONS
    LIN, Q
    SHI, J
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1993, 11 (04): : 297 - 300
  • [23] Sharp a posteriori error estimate for elliptic equation with singular data
    Gang Yuan
    Ruo Li
    Frontiers of Mathematics in China, 2011, 6 : 177 - 202
  • [24] METHOD OF STATISTICAL REGULARIZATION WITH A POSTERIORI ESTIMATE OF INITIAL DATA ERROR
    TURCHIN, VF
    TUROVTSE.LS
    DOKLADY AKADEMII NAUK SSSR, 1973, 212 (03): : 561 - 564
  • [25] A New a Posteriori Error Estimate for Adaptive Finite Element Methods
    Huang, Yunqing
    Wei, Huayi
    Yang, Wei
    Yi, Nianyu
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 63 - 74
  • [26] Functional A Posteriori Error Estimate for a Nonsymmetric Stationary Diffusion Problem
    Mali, Olli
    MATHEMATICAL MODELING AND OPTIMIZATION OF COMPLEX STRUCTURES, 2016, 40 : 21 - 30
  • [27] A posteriori error estimate in the case of insufficient regularity of the discrete space
    Kanschat, G
    Suttmeier, FT
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 349 - 354
  • [28] A posteriori error estimate and adaptivity for QM/MM models of defects
    Wang, Yangshuai
    Kermode, James R.
    Ortner, Christoph
    Zhang, Lei
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 428
  • [29] An a posteriori error estimate for a first-kind integral equation
    Carstensen, C
    MATHEMATICS OF COMPUTATION, 1997, 66 (217) : 139 - 155
  • [30] Sharp a posteriori error estimate for elliptic equation with singular data
    Yuan, Gang
    Li, Ruo
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (01) : 177 - 202