Nonlinear drift-diffusion model of gating in the fast Cl channel

被引:7
|
作者
Vaccaro, S. R. [1 ]
机构
[1] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 01期
关键词
D O I
10.1103/PhysRevE.76.011923
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of the open or closed state region of an ion channel may be described by a probability density p(x,t) which satisfies a Fokker-Planck equation. The closed state dwell-time distribution f(c)(t) derived from the Fokker-Planck equation with a nonlinear diffusion coefficient D(x)proportional to exp(-gamma x), gamma>0 and a linear ramp potential U-c(x), is in good agreement with experimental data and it may be shown analytically that if gamma is sufficiently large, f(c)(t)proportional to t(-2-nu) for intermediate times, where nu=U-c(')/gamma approximate to-0.3 for a fast Cl channel. The solution of a master equation which approximates the Fokker-Planck equation exhibits an oscillation superimposed on the power law trend and can account for an empirical rate-amplitude correlation that applies to several ion channels.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Nonlinear drift-diffusion model of gating in K and nACh ion channels
    Vaccaro, S. R.
    PHYSICS LETTERS A, 2007, 368 (06) : 480 - 485
  • [3] NUMERICAL APPROXIMATION OF A DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS WITH NONLINEAR DIFFUSION
    JUNGEL, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (10): : 783 - 799
  • [4] The study of a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    ICM 2001: 13TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2001, : 54 - 58
  • [5] Testing the drift-diffusion model
    Fudenberg, Drew
    Newey, Whitney
    Strack, Philipp
    Strzalecki, Tomasz
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (52) : 33141 - 33148
  • [6] Derivation of a kinetic/drift-diffusion model describing fast and slow particles
    Crouseilles, N
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) : 827 - 832
  • [7] QUALITATIVE BEHAVIOR OF SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    JUNGEL, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (04): : 497 - 518
  • [8] Generalized Drift-Diffusion Model In Semiconductors
    Mesbah, S.
    Bendib-Kalache, K.
    Bendib, A.
    LASER AND PLASMA APPLICATIONS IN MATERIALS SCIENCE, 2008, 1047 : 252 - 255
  • [9] On the stationary quantum drift-diffusion model
    N. Ben Abdallah
    A. Unterreiter
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 251 - 275
  • [10] The bipolar quantum drift-diffusion model
    Xiu Qing Chen
    Li Chen
    Acta Mathematica Sinica, English Series, 2009, 25