A generalization of Gauchman's rigidity theorem

被引:11
|
作者
Xu, Hong-Wei [1 ]
Fang, Wang [1 ]
Xiang, Fei [1 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会;
关键词
closed submanifolds; rigidity theorem; parallel mean curvature;
D O I
10.2140/pjm.2006.228.185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the well-known Gauchman theorem for closed minimal submanifolds in a unit sphere, and prove that if M is an n-dimensional closed submanifold of parallel mean curvature in Sn+p and if or (u) <= 1/3 for any unit vector u is an element of TM, where sigma (u) = parallel to h(u, u)parallel to(2), and h is the second fundamental form of M, then either sigma (u) equivalent to H-2 and M is a totally umbilical sphere, or sigma (u) equivalent to 1/3. Moreover, we give a geometrical classification of closed submanifolds with parallel mean curvature satisfying sigma (u) equivalent to 1/3.
引用
收藏
页码:185 / 199
页数:15
相关论文
共 50 条
  • [21] A generalization of Ohkawa's theorem
    Casacuberta, Carles
    Gutierrez, Javier J.
    Rosicky, Jiri
    COMPOSITIO MATHEMATICA, 2014, 150 (05) : 893 - 902
  • [22] A GENERALIZATION OF PTOLEMY'S THEOREM
    Tran, Quang Hung
    Tran, Manh Dung
    TEACHING OF MATHEMATICS, 2024, 27 (02): : 104 - 111
  • [23] A Generalization of Pohlke's Theorem
    Bergold, Helmut
    ELEMENTE DER MATHEMATIK, 2014, 69 (02) : 57 - 60
  • [24] A generalization of Forelli's theorem
    Joo, Jae-Cheon
    Kim, Kang-Tae
    Schmalz, Gerd
    MATHEMATISCHE ANNALEN, 2013, 355 (03) : 1171 - 1176
  • [25] A generalization of Cobham's theorem
    Durand, F
    THEORY OF COMPUTING SYSTEMS, 1998, 31 (02) : 169 - 185
  • [26] Generalization of Obata's theorem
    J Geom Anal, 3 (357-375):
  • [27] A generalization of Jentzsch’s theorem
    E. A. Lebedeva
    Mathematical Notes, 2010, 88 : 717 - 722
  • [28] On a generalization of Fueter's theorem
    Sommen, F
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04): : 899 - 902
  • [29] A generalization of Poncelet's theorem
    Protasov, V. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (06) : 1180 - 1182
  • [30] On a generalization of Polya's theorem
    Rochev, I. P.
    MATHEMATICAL NOTES, 2007, 81 (1-2) : 247 - 259