A generalization of Gauchman's rigidity theorem

被引:11
|
作者
Xu, Hong-Wei [1 ]
Fang, Wang [1 ]
Xiang, Fei [1 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会;
关键词
closed submanifolds; rigidity theorem; parallel mean curvature;
D O I
10.2140/pjm.2006.228.185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the well-known Gauchman theorem for closed minimal submanifolds in a unit sphere, and prove that if M is an n-dimensional closed submanifold of parallel mean curvature in Sn+p and if or (u) <= 1/3 for any unit vector u is an element of TM, where sigma (u) = parallel to h(u, u)parallel to(2), and h is the second fundamental form of M, then either sigma (u) equivalent to H-2 and M is a totally umbilical sphere, or sigma (u) equivalent to 1/3. Moreover, we give a geometrical classification of closed submanifolds with parallel mean curvature satisfying sigma (u) equivalent to 1/3.
引用
收藏
页码:185 / 199
页数:15
相关论文
共 50 条
  • [31] A generalization of Obata’s theorem
    Akhil Ranjan
    G. Santhanam
    The Journal of Geometric Analysis, 1997, 7 (3): : 357 - 375
  • [32] On a Generalization of Voronin's Theorem
    Laurincikas, A.
    MATHEMATICAL NOTES, 2020, 107 (3-4) : 442 - 451
  • [33] A Generalization of Schatunowsky's Theorem
    Kaneko, Yuto
    Nakai, Hirofumi
    AMERICAN MATHEMATICAL MONTHLY, 2025,
  • [34] Cauchy's theorem and generalization
    Reuss, Paul
    EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2018, 4
  • [35] GENERALIZATION OF A THEOREM OF KULLBACK,S
    RECOULES, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (12): : 691 - 694
  • [36] A generalization of the Opial's theorem
    Cegielski, Andrzej
    CONTROL AND CYBERNETICS, 2007, 36 (03): : 601 - 610
  • [37] On a generalization of Lyapounov's theorem
    vanMill, J
    Ran, A
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02): : 227 - 242
  • [38] A generalization of Niho's theorem
    Rosendahl, P
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 38 (03) : 331 - 336
  • [39] A generalization of Aronszajn's theorem
    Filippov, VV
    DIFFERENTIAL EQUATIONS, 1997, 33 (01) : 75 - 79
  • [40] A generalization of Boesch's theorem
    Hu, Maolin
    Cheng, Yongxi
    Xu, Weidong
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1171 - 1177