A generalization of Cobham's theorem

被引:34
|
作者
Durand, F [1 ]
机构
[1] Inst Math Luminy, UPR 9016 CNRS, F-13288 Marseille 9, France
关键词
D O I
10.1007/s002240000084
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
If a nonperiodic sequence X is the image by a morphism of a fixed point of both a primitive substitution sigma and a primitive substitution tau, then the dominant eigenvalues of the matrices of sigma and tau are multiplicatively dependent. This is the way we propose to generalize Cobham's theorem.
引用
收藏
页码:169 / 185
页数:17
相关论文
共 50 条
  • [1] A Generalization of Cobham's Theorem
    F. Durand
    Theory of Computing Systems, 1998, 31 : 169 - 185
  • [2] A generalization of Cobham's theorem
    Durand, F.
    Theory of Computing Systems, 31 (02): : 169 - 185
  • [3] A GENERALIZATION OF THE COBHAM THEOREM
    FABRE, S
    ACTA ARITHMETICA, 1994, 67 (03) : 197 - 208
  • [4] A generalization of Cobham's theorem to automata over real numbers
    Boigelot, Bernard
    Brusten, Julien
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 813 - +
  • [5] A generalization of Cobham's theorem to automata over real numbers
    Boigelot, Bernard
    Brusten, Julien
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (18) : 1694 - 1703
  • [6] Cobham's Theorem and Automaticity
    Mol, Lucas
    Rampersad, Narad
    Shallit, Jeffrey
    Stipulanti, Manon
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2019, 30 (08) : 1363 - 1379
  • [7] Cobham's theorem for substitutions
    Durand, Fabien
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (06) : 1799 - 1814
  • [8] A density version of Cobham's theorem
    Byszewski, Jakub
    Konieczny, Jakub
    ACTA ARITHMETICA, 2020, 192 (03) : 235 - 247
  • [9] A Strong Version of Cobham's Theorem
    Hieronymi, Philipp
    Schulz, Christian
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 1172 - 1179
  • [10] An asymptotic version of Cobham's theorem
    Konieczny, Jakub
    ACTA ARITHMETICA, 2023, 211 (04) : 323 - 343