A QUARTICLY CONVERGENT METHOD FOR EIGENVALUES OF GENERAL TENSORS

被引:0
|
作者
Yang, Wei-Wei [1 ]
Liu, Hao [1 ]
Ni, Qin [2 ]
机构
[1] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
[2] NUAA, Coll Sci, Nanjing 211106, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2021年 / 17卷 / 03期
基金
中国国家自然科学基金;
关键词
quartic convergence; tensor eigenvalue; nonlinear equations; PERRON-FROBENIUS THEOREM; NONNEGATIVE TENSORS; REAL EIGENVALUES; ALGORITHM;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a quarticly convergent method is proposed for solving a system of nonlinear equations, which is a three-step iterative method. This method is used to find the largest H eigenvalue of irreducible nonnegative tensor and the Z eigenvalues of general tensors, where its computational complexity is slightly greater than Newton method. Due to the particular structure of the problem, the computation of three order tensor and four order tensor are implicit, and a economic computing scheme is given in the algorithm. The global and quartic convergence of the new method are proved. Numerical results indicate that the proposed method is competitive and efficient on some tensor problems.
引用
收藏
页码:467 / 485
页数:19
相关论文
共 50 条
  • [41] NEW BOUNDS FOR EIGENVALUES OF STRICTLY DIAGONALLY DOMINANT TENSORS
    Gu, Yining
    Wu, Wei
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2018, 8 (02): : 203 - 210
  • [42] Upper bounds for eigenvalues of Cauchy-Hankel tensors
    Mei, Wei
    Yang, Qingzhi
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (04) : 1023 - 1041
  • [43] On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs
    Xie, Jinshan
    Chang, An
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (08) : 2195 - 2204
  • [44] H+-EIGENVALUES OF LAPLACIAN AND SIGNLESS LAPLACIAN TENSORS
    Qi, Liqun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (06) : 1045 - 1064
  • [45] Some upper bounds on Zt-eigenvalues of tensors
    Wang, Guiyan
    Deng, Chunli
    Bu, Changjiang
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 329 : 266 - 277
  • [46] THE RATE OF CONVERGENCE AND WEAKER CONVERGENT CONDITION FOR THE METHOD FOR FINDING THE LARGEST SINGULAR VALUE OF RECTANGULAR TENSORS
    Ibrahim, Nur Fadhilah
    Mohamed, Nurul Akmal
    JURNAL TEKNOLOGI, 2016, 78 (6-5): : 87 - 94
  • [47] Eigenvalues estimates for the Dirac operator in terms of Codazzi tensors
    Friedrich, Thomas
    Kim, Eui Chul
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) : 365 - 373
  • [48] Upper bounds for eigenvalues of Cauchy-Hankel tensors
    Wei Mei
    Qingzhi Yang
    Frontiers of Mathematics in China, 2021, 16 : 1023 - 1041
  • [49] Eigenvalues of Quaternion Tensors with Applications to Color Video Processing
    Zhuo-Heng He
    Xiang-Xiang Wang
    Yun-Fan Zhao
    Journal of Scientific Computing, 2023, 94
  • [50] TM-Eigenvalues of Odd-Order Tensors
    Pakmanesh, M.
    Afshin, Hamidreza
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (04) : 1258 - 1279