A QUARTICLY CONVERGENT METHOD FOR EIGENVALUES OF GENERAL TENSORS

被引:0
|
作者
Yang, Wei-Wei [1 ]
Liu, Hao [1 ]
Ni, Qin [2 ]
机构
[1] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
[2] NUAA, Coll Sci, Nanjing 211106, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2021年 / 17卷 / 03期
基金
中国国家自然科学基金;
关键词
quartic convergence; tensor eigenvalue; nonlinear equations; PERRON-FROBENIUS THEOREM; NONNEGATIVE TENSORS; REAL EIGENVALUES; ALGORITHM;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a quarticly convergent method is proposed for solving a system of nonlinear equations, which is a three-step iterative method. This method is used to find the largest H eigenvalue of irreducible nonnegative tensor and the Z eigenvalues of general tensors, where its computational complexity is slightly greater than Newton method. Due to the particular structure of the problem, the computation of three order tensor and four order tensor are implicit, and a economic computing scheme is given in the algorithm. The global and quartic convergence of the new method are proved. Numerical results indicate that the proposed method is competitive and efficient on some tensor problems.
引用
收藏
页码:467 / 485
页数:19
相关论文
共 50 条
  • [21] A descent cautious BFGS method for computing US-eigenvalues of symmetric complex tensors
    Bai, Minru
    Zhao, Jing
    Zhang, ZhangHui
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 76 (04) : 889 - 911
  • [22] A nonmonotone accelerated Levenberg-Marquardt method for the B-eigenvalues of symmetric tensors
    Cao, Mingyuan
    Yang, Yueting
    Hou, Tianliang
    Li, Chaoqian
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2022, 29 (01) : 113 - 129
  • [23] Z-eigenvalues based structured tensors: Mz-tensors and strong Mz-tensors
    Mo, Changxin
    Li, Chaoqian
    Wang, Xuezhong
    Wei, Yimin
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [24] QUADRATICALLY CONVERGENT JACOBI-LIKE METHOD FOR REAL MATRICES WITH COMPLEX EIGENVALUES
    VESELIC, K
    WENZEL, HJ
    NUMERISCHE MATHEMATIK, 1979, 33 (04) : 425 - 435
  • [25] Group Comparison of Eigenvalues and Eigenvectors of Diffusion Tensors
    Schwartzman, Armin
    Dougherty, Robert F.
    Taylor, Jonathan E.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) : 588 - 599
  • [26] Bounds of H-eigenvalues of interval tensors
    Lu-Bin Cui
    Xiao-Jing Zhang
    Computational and Applied Mathematics, 2023, 42
  • [27] Eigenvalues of Quaternion Tensors: Properties, Algorithms and Applications
    He, Zhuo-Heng
    Liu, Ting-Ting
    Wang, Xiang-Xiang
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2025, 35 (01)
  • [28] Computing the generalized eigenvalues of weakly symmetric tensors
    Na Zhao
    Qingzhi Yang
    Yajun Liu
    Computational Optimization and Applications, 2017, 66 : 285 - 307
  • [29] Bounds of H-eigenvalues of interval tensors
    Cui, Lu-Bin
    Zhang, Xiao-Jing
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [30] Computing the generalized eigenvalues of weakly symmetric tensors
    Zhao, Na
    Yang, Qingzhi
    Liu, Yajun
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 66 (02) : 285 - 307