A QUARTICLY CONVERGENT METHOD FOR EIGENVALUES OF GENERAL TENSORS

被引:0
|
作者
Yang, Wei-Wei [1 ]
Liu, Hao [1 ]
Ni, Qin [2 ]
机构
[1] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
[2] NUAA, Coll Sci, Nanjing 211106, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2021年 / 17卷 / 03期
基金
中国国家自然科学基金;
关键词
quartic convergence; tensor eigenvalue; nonlinear equations; PERRON-FROBENIUS THEOREM; NONNEGATIVE TENSORS; REAL EIGENVALUES; ALGORITHM;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a quarticly convergent method is proposed for solving a system of nonlinear equations, which is a three-step iterative method. This method is used to find the largest H eigenvalue of irreducible nonnegative tensor and the Z eigenvalues of general tensors, where its computational complexity is slightly greater than Newton method. Due to the particular structure of the problem, the computation of three order tensor and four order tensor are implicit, and a economic computing scheme is given in the algorithm. The global and quartic convergence of the new method are proved. Numerical results indicate that the proposed method is competitive and efficient on some tensor problems.
引用
收藏
页码:467 / 485
页数:19
相关论文
共 50 条
  • [31] D-eigenvalues of diffusion kurtosis tensors
    Qi, Liqun
    Wang, Yiju
    Wu, Ed X.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (01) : 150 - 157
  • [32] Singular values and eigenvalues of tensors: A variational approach
    Lim, LH
    IEEE CAMSAP 2005: FIRST INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2005, : 129 - 132
  • [33] Multiplications and eigenvalues of tensors via linear maps
    Fan, Zhaobing
    Deng, Chunli
    Li, Haifeng
    Bu, Changjiang
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (03): : 606 - 621
  • [34] A general method to retrieve electromagnetic polarizability tensors of metamaterial resonators
    Araque, J. L.
    Baena, J. D.
    2013 7TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2013), 2013, : 490 - 492
  • [35] General method for symmetry orbitals and tensors in electronic structure calculations
    Zhou, TJ
    Mo, YR
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1999, 20 (03) : 305 - 321
  • [36] A self-adaptive trust region method for extreme B-eigenvalues of symmetric tensors
    Cao, Mingyuan
    Huang, Qingdao
    Yang, Yueting
    NUMERICAL ALGORITHMS, 2019, 81 (02) : 407 - 420
  • [37] A FEASIBLE TRUST-REGION METHOD FOR CALCULATING EXTREME Z-EIGENVALUES OF SYMMETRIC TENSORS
    Hao, Chun-Lin
    Cui, Chun-Feng
    Dai, Yu-Hong
    PACIFIC JOURNAL OF OPTIMIZATION, 2015, 11 (02): : 291 - 307
  • [38] Computing Extreme Eigenvalues of Large Scale Hankel Tensors
    Chen, Yannan
    Qi, Liqun
    Wang, Qun
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (02) : 716 - 738
  • [39] A TRUST REGION ALGORITHM FOR COMPUTING EXTREME EIGENVALUES OF TENSORS
    Chen, Yannan
    Chang, Jingya
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (04): : 475 - 485
  • [40] Eigenvalues of Quaternion Tensors with Applications to Color Video Processing
    He, Zhuo-Heng
    Wang, Xiang-Xiang
    Zhao, Yun-Fan
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (01)