A QUARTICLY CONVERGENT METHOD FOR EIGENVALUES OF GENERAL TENSORS

被引:0
|
作者
Yang, Wei-Wei [1 ]
Liu, Hao [1 ]
Ni, Qin [2 ]
机构
[1] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
[2] NUAA, Coll Sci, Nanjing 211106, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2021年 / 17卷 / 03期
基金
中国国家自然科学基金;
关键词
quartic convergence; tensor eigenvalue; nonlinear equations; PERRON-FROBENIUS THEOREM; NONNEGATIVE TENSORS; REAL EIGENVALUES; ALGORITHM;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a quarticly convergent method is proposed for solving a system of nonlinear equations, which is a three-step iterative method. This method is used to find the largest H eigenvalue of irreducible nonnegative tensor and the Z eigenvalues of general tensors, where its computational complexity is slightly greater than Newton method. Due to the particular structure of the problem, the computation of three order tensor and four order tensor are implicit, and a economic computing scheme is given in the algorithm. The global and quartic convergence of the new method are proved. Numerical results indicate that the proposed method is competitive and efficient on some tensor problems.
引用
收藏
页码:467 / 485
页数:19
相关论文
共 50 条
  • [1] CONVERGENT METHOD FOR CALCULATING THE EIGENVALUES OF ANHARMONIC POTENTIALS
    DEAGUIAR, MAM
    XAVIER, AL
    PHYSICS LETTERS A, 1992, 164 (3-4) : 279 - 283
  • [2] Eigenvalues and invariants of tensors
    Qi, Liqun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (02) : 1363 - 1377
  • [3] A GENERAL METHOD FOR REDUCTION OF CRYSTALLOGRAPHICS TENSORS
    SIVARDIERE, J
    WAINTAL, A
    BULLETIN DE LA SOCIETE FRANCAISE MINERALOGIE ET DE CRISTALLOGRAPHIE, 1969, 92 (03): : 241 - +
  • [4] THE MULTIVARIATE EIGENVALUES OF SYMMETRIC TENSORS
    Zhou, Anwa
    Ni, Yangyang
    Fan, Jinyan
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (04) : 1954 - 1977
  • [5] Real eigenvalues of nonsymmetric tensors
    Nie, Jiawang
    Zhang, Xinzhen
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (01) : 1 - 32
  • [6] Real eigenvalues of nonsymmetric tensors
    Jiawang Nie
    Xinzhen Zhang
    Computational Optimization and Applications, 2018, 70 : 1 - 32
  • [7] AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS
    Chen, Yuting
    Cao, Mingyuan
    Yang, Yueting
    Huang, Qingdao
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (03): : 358 - 374
  • [8] An accelerated conjugate gradient method for the Z-eigenvalues of symmetric tensors
    Cao, Mingyuan
    Yang, Yueting
    Li, Chaoqian
    Jiang, Xiaowei
    AIMS MATHEMATICS, 2023, 8 (07): : 15008 - 15023
  • [9] QUADRATICALLY CONVERGENT JACOBI METHOD FOR REAL MATRICES WITH COMPLEX EIGENVALUES
    WENZEL, HJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1980, 60 (7BIS): : T326 - T328
  • [10] The eigenvalues and eigenvectors of nonsingular tensors, similar tensors and tensor products
    Liu, Xifu
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (09): : 1717 - 1725