Nordhaus-Gaddum type results for graph irregularities

被引:8
|
作者
Ma, Yuede [1 ]
Cao, Shujuan [2 ]
Shi, Yongtang [3 ,4 ]
Dehmer, Matthias [5 ,6 ]
Xia, Chengyi [7 ,8 ]
机构
[1] Xian Technol Univ, Sch Sci, Xian 710021, Shaanxi, Peoples R China
[2] Tianjin Polytech Univ, Sch Sci, Tianjin 300387, Peoples R China
[3] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[5] Univ Appl Sci Upper Austria, Fac Management, Inst Intelligent Prod, Steyr Campus, Steyr, Austria
[6] UMIT, Inst Bioinformat & Translat Res, Eduard Wallnoefer Zentrum 1, A-6060 Hall In Tirol, Austria
[7] Tianjin Univ Technol, Tianjin Key Lab Intelligence Comp & Novel Softwar, Tianjin 300384, Peoples R China
[8] Tianjin Univ Technol, Key Lab Comp Vis & Syst, Minist Educ, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Regular graph; Graph irregularity; Nordhaus-Gaddum; Degree; Zagreb index; RANDIC INDEX; CONNECTIVITY; ENTROPIES; NETWORKS; BOUNDS; TREES; SUM;
D O I
10.1016/j.amc.2018.09.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph whose vertices have the same degree is called regular. Otherwise, the graph is irregular. In fact, various measures of irregularity have been proposed and examined. For a given graph G = (V, E) with V = {v(1), v(2), . . . , v(n)} and edge set E(G), d(i) is the vertex degree where 1 <= i <= n. The irregularity of G is defined by irr(G) = Sigma(vivj is an element of E(G)) vertical bar d(i) - d(j)vertical bar. A similar measure can be defined by irr(2)(G) = Sigma(vivj is an element of E(G) )(d(i) - d(j))(2). The total irregularity of G is defined by irr(t) (G) = 1/2 Sigma(vivj is an element of v(G)) vertical bar d(i) - d(j)vertical bar. The variance of the vertex degrees is defined var(G) = 1/n Sigma(n )(i=1)d(i)(2) - (2m/n)(2). In this paper, we present some Nordhaus-Gaddum type results for these measures and draw conclusions. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:268 / 272
页数:5
相关论文
共 50 条
  • [41] A note on Nordhaus-Gaddum inequalities for domination
    Shan, EF
    Dang, CY
    Kang, LY
    DISCRETE APPLIED MATHEMATICS, 2004, 136 (01) : 83 - 85
  • [42] Extremal decompositions for Nordhaus-Gaddum theorems
    Bickle, Allan
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [43] Nordhaus-Gaddum bounds for independent domination
    Goddard, W
    Henning, MA
    DISCRETE MATHEMATICS, 2003, 268 (1-3) : 299 - 302
  • [44] On Nordhaus-Gaddum type relations of 5-complement graphs
    Vichitkunakorn, Panupong
    Maungchang, Rasimate
    Tangjai, Wipawee
    HELIYON, 2023, 9 (06)
  • [45] Nordhaus-Gaddum and other bounds for the sum of squares of the positive eigenvalues of a graph
    Elphick, Clive
    Aouchiche, Mustapha
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 530 : 150 - 159
  • [46] Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph
    Meierling, D.
    Sheikholeslami, S. M.
    Volkmann, L.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (10) : 1758 - 1761
  • [47] Inequalities of Nordhaus-Gaddum type for doubly connected domination number
    Akhbari, M. H.
    Hasni, R.
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (14) : 1465 - 1470
  • [48] Solution to a conjecture on a Nordhaus-Gaddum type result for the Kirchhoff index
    Yang, Yujun
    Cao, Yuliang
    Yao, Haiyuan
    Li, Jing
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 : 241 - 249
  • [49] A sharp upper bound for the spectral radius of the Nordhaus-Gaddum type
    Hong, Y
    Shu, JL
    DISCRETE MATHEMATICS, 2000, 211 (1-3) : 229 - 232
  • [50] SOME THEOREMS OF THE NORDHAUS-GADDUM CLASS
    WANG Zhijian Department of Mathematics
    SystemsScienceandMathematicalSciences, 1993, (03) : 239 - 244