Nordhaus-Gaddum type results for graph irregularities

被引:8
|
作者
Ma, Yuede [1 ]
Cao, Shujuan [2 ]
Shi, Yongtang [3 ,4 ]
Dehmer, Matthias [5 ,6 ]
Xia, Chengyi [7 ,8 ]
机构
[1] Xian Technol Univ, Sch Sci, Xian 710021, Shaanxi, Peoples R China
[2] Tianjin Polytech Univ, Sch Sci, Tianjin 300387, Peoples R China
[3] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[5] Univ Appl Sci Upper Austria, Fac Management, Inst Intelligent Prod, Steyr Campus, Steyr, Austria
[6] UMIT, Inst Bioinformat & Translat Res, Eduard Wallnoefer Zentrum 1, A-6060 Hall In Tirol, Austria
[7] Tianjin Univ Technol, Tianjin Key Lab Intelligence Comp & Novel Softwar, Tianjin 300384, Peoples R China
[8] Tianjin Univ Technol, Key Lab Comp Vis & Syst, Minist Educ, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Regular graph; Graph irregularity; Nordhaus-Gaddum; Degree; Zagreb index; RANDIC INDEX; CONNECTIVITY; ENTROPIES; NETWORKS; BOUNDS; TREES; SUM;
D O I
10.1016/j.amc.2018.09.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph whose vertices have the same degree is called regular. Otherwise, the graph is irregular. In fact, various measures of irregularity have been proposed and examined. For a given graph G = (V, E) with V = {v(1), v(2), . . . , v(n)} and edge set E(G), d(i) is the vertex degree where 1 <= i <= n. The irregularity of G is defined by irr(G) = Sigma(vivj is an element of E(G)) vertical bar d(i) - d(j)vertical bar. A similar measure can be defined by irr(2)(G) = Sigma(vivj is an element of E(G) )(d(i) - d(j))(2). The total irregularity of G is defined by irr(t) (G) = 1/2 Sigma(vivj is an element of v(G)) vertical bar d(i) - d(j)vertical bar. The variance of the vertex degrees is defined var(G) = 1/n Sigma(n )(i=1)d(i)(2) - (2m/n)(2). In this paper, we present some Nordhaus-Gaddum type results for these measures and draw conclusions. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:268 / 272
页数:5
相关论文
共 50 条
  • [21] More eigenvalue problems of Nordhaus-Gaddum type
    Nikiforov, Vladimir
    Yuan, Xiying
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 451 : 231 - 245
  • [22] A NOTE ON THE NORDHAUS-GADDUM TYPE INEQUALITY TO THE SECOND LARGEST EIGENVALUE OF A GRAPH
    Abreu, Nair
    Brondani, Andre E.
    de Lima, Leonardo
    Oliveira, Carla
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2017, 11 (01) : 123 - 135
  • [23] Nordhaus-Gaddum results for the sum of the induced path number of a graph and its complement
    Johannes H. Hattingh
    Ossama A. Saleh
    Lucas C. van Der Merwe
    Terry J. Walters
    Acta Mathematica Sinica, English Series, 2012, 28 : 2365 - 2372
  • [24] Nordhaus-Gaddum Results for the Sum of the Induced Path Number of a Graph and Its Complement
    Johannes HHATTINGH
    Ossama ASALEH
    Lucas CVAN DER MERWE
    Terry JWALTERS
    Acta Mathematica Sinica, 2012, 28 (12) : 2365 - 2372
  • [25] NORDHAUS-GADDUM RELATIONS FOR ABSORPTION NUMBER OF SIMPLE GRAPH
    JAEGER, F
    PAYAN, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (09): : 728 - &
  • [26] Nordhaus-Gaddum type inequalities for the distinguishing index
    Pilsniak, Monika
    ARS MATHEMATICA CONTEMPORANEA, 2021, 20 (02) : 223 - 231
  • [27] Nordhaus-Gaddum results for CO-irredundance in graphs
    Cockayne, EJ
    McCrea, D
    Mynhardt, CM
    DISCRETE MATHEMATICS, 2000, 211 (1-3) : 209 - 215
  • [28] Nordhaus-Gaddum Results for the Sum of the Induced Path Number of a Graph and Its Complement
    Johannes H.HATTINGH
    Ossama A.SALEH
    Lucas C.VAN DER MERWE
    Terry J.WALTERS
    Acta Mathematica Sinica,English Series, 2012, (12) : 2365 - 2372
  • [29] A THEOREM OF THE NORDHAUS-GADDUM CLASS
    WATKINSON, T
    ARS COMBINATORIA, 1985, 20B : 35 - 42
  • [30] Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs
    Wang, Tianfei
    Jia, Liping
    Sun, Feng
    SCIENTIFIC WORLD JOURNAL, 2013,