Nordhaus-Gaddum type results for graph irregularities

被引:8
|
作者
Ma, Yuede [1 ]
Cao, Shujuan [2 ]
Shi, Yongtang [3 ,4 ]
Dehmer, Matthias [5 ,6 ]
Xia, Chengyi [7 ,8 ]
机构
[1] Xian Technol Univ, Sch Sci, Xian 710021, Shaanxi, Peoples R China
[2] Tianjin Polytech Univ, Sch Sci, Tianjin 300387, Peoples R China
[3] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[5] Univ Appl Sci Upper Austria, Fac Management, Inst Intelligent Prod, Steyr Campus, Steyr, Austria
[6] UMIT, Inst Bioinformat & Translat Res, Eduard Wallnoefer Zentrum 1, A-6060 Hall In Tirol, Austria
[7] Tianjin Univ Technol, Tianjin Key Lab Intelligence Comp & Novel Softwar, Tianjin 300384, Peoples R China
[8] Tianjin Univ Technol, Key Lab Comp Vis & Syst, Minist Educ, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Regular graph; Graph irregularity; Nordhaus-Gaddum; Degree; Zagreb index; RANDIC INDEX; CONNECTIVITY; ENTROPIES; NETWORKS; BOUNDS; TREES; SUM;
D O I
10.1016/j.amc.2018.09.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph whose vertices have the same degree is called regular. Otherwise, the graph is irregular. In fact, various measures of irregularity have been proposed and examined. For a given graph G = (V, E) with V = {v(1), v(2), . . . , v(n)} and edge set E(G), d(i) is the vertex degree where 1 <= i <= n. The irregularity of G is defined by irr(G) = Sigma(vivj is an element of E(G)) vertical bar d(i) - d(j)vertical bar. A similar measure can be defined by irr(2)(G) = Sigma(vivj is an element of E(G) )(d(i) - d(j))(2). The total irregularity of G is defined by irr(t) (G) = 1/2 Sigma(vivj is an element of v(G)) vertical bar d(i) - d(j)vertical bar. The variance of the vertex degrees is defined var(G) = 1/n Sigma(n )(i=1)d(i)(2) - (2m/n)(2). In this paper, we present some Nordhaus-Gaddum type results for these measures and draw conclusions. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:268 / 272
页数:5
相关论文
共 50 条
  • [31] NORDHAUS-GADDUM TYPE RELATIONS FOR SOME TOPOLOGICAL INDICES
    Kureethara, J., V
    Majhi, B. K.
    Mahalank, P.
    Cangul, I. N.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (01): : 183 - 193
  • [32] Nordhaus-Gaddum type inequality for the integer k-matching number of a graph✩
    Chen, Qian-Qian
    Guo, Ji-Ming
    DISCRETE APPLIED MATHEMATICS, 2023, 340 (21-31) : 21 - 31
  • [33] PRODUCTS OF GRAPHS AND NORDHAUS-GADDUM TYPE INEQUALITIES
    Keyvan, Nastran
    Rahmati, Farhad
    TRANSACTIONS ON COMBINATORICS, 2018, 7 (01) : 30 - 35
  • [34] A Nordhaus-Gaddum conjecture for the minimum number of distinct eigenvalues of a graph
    Levene, Rupert H.
    Oblak, Polona
    Smigoc, Helena
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 564 : 236 - 263
  • [35] A Nordhaus-Gaddum type problem for the normalized Laplacian spectrum and graph Cheeger constant
    Faught, J. Nolan
    Kempton, Mark
    Knudson, Adam
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 480
  • [36] Nordhaus-Gaddum bounds for total domination
    Henning, Michael A.
    Joubert, Ernst J.
    Southey, Justin
    APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 987 - 990
  • [37] A Nordhaus-Gaddum bound for Roman domination
    Rad, Nader Jafari
    Rahbani, Hadi
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (05)
  • [38] Nordhaus-Gaddum inequalities for domination in graphs
    Harary, F
    Haynes, TW
    DISCRETE MATHEMATICS, 1996, 155 (1-3) : 99 - 105
  • [39] Signless Laplacian eigenvalue problems of Nordhaus-Gaddum type
    Huang, Xueyi
    Lin, Huiqiu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 581 : 336 - 353
  • [40] Hereditary Nordhaus-Gaddum graphs
    Sivaraman, Vaidy
    Whitman, Rebecca
    DISCRETE APPLIED MATHEMATICS, 2025, 367 : 150 - 164