Nordhaus-Gaddum type results for graph irregularities

被引:8
|
作者
Ma, Yuede [1 ]
Cao, Shujuan [2 ]
Shi, Yongtang [3 ,4 ]
Dehmer, Matthias [5 ,6 ]
Xia, Chengyi [7 ,8 ]
机构
[1] Xian Technol Univ, Sch Sci, Xian 710021, Shaanxi, Peoples R China
[2] Tianjin Polytech Univ, Sch Sci, Tianjin 300387, Peoples R China
[3] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[5] Univ Appl Sci Upper Austria, Fac Management, Inst Intelligent Prod, Steyr Campus, Steyr, Austria
[6] UMIT, Inst Bioinformat & Translat Res, Eduard Wallnoefer Zentrum 1, A-6060 Hall In Tirol, Austria
[7] Tianjin Univ Technol, Tianjin Key Lab Intelligence Comp & Novel Softwar, Tianjin 300384, Peoples R China
[8] Tianjin Univ Technol, Key Lab Comp Vis & Syst, Minist Educ, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Regular graph; Graph irregularity; Nordhaus-Gaddum; Degree; Zagreb index; RANDIC INDEX; CONNECTIVITY; ENTROPIES; NETWORKS; BOUNDS; TREES; SUM;
D O I
10.1016/j.amc.2018.09.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph whose vertices have the same degree is called regular. Otherwise, the graph is irregular. In fact, various measures of irregularity have been proposed and examined. For a given graph G = (V, E) with V = {v(1), v(2), . . . , v(n)} and edge set E(G), d(i) is the vertex degree where 1 <= i <= n. The irregularity of G is defined by irr(G) = Sigma(vivj is an element of E(G)) vertical bar d(i) - d(j)vertical bar. A similar measure can be defined by irr(2)(G) = Sigma(vivj is an element of E(G) )(d(i) - d(j))(2). The total irregularity of G is defined by irr(t) (G) = 1/2 Sigma(vivj is an element of v(G)) vertical bar d(i) - d(j)vertical bar. The variance of the vertex degrees is defined var(G) = 1/n Sigma(n )(i=1)d(i)(2) - (2m/n)(2). In this paper, we present some Nordhaus-Gaddum type results for these measures and draw conclusions. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:268 / 272
页数:5
相关论文
共 50 条
  • [1] Nordhaus-Gaddum type inequalities of the second Aα-eigenvalue of a graph
    Chen, Yuanyuan
    Li, Dan
    Meng, Jixiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 57 - 72
  • [2] Nordhaus-Gaddum results for genus
    Bickle, Allan
    White, Arthur
    DISCRETE MATHEMATICS, 2013, 313 (06) : 824 - 829
  • [3] Nordhaus-Gaddum type result for the matching number of a graph
    Lin, Huiqiu
    Shu, Jinlong
    Wu, Baoyindureng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (03) : 916 - 930
  • [4] NORDHAUS-GADDUM RESULTS FOR THE CONVEX DOMINATION NUMBER OF A GRAPH
    Lemanska, M.
    Rodriguez-Velazquez, J. A.
    Gonzalez Yero, I.
    PERIODICA MATHEMATICA HUNGARICA, 2012, 65 (01) : 125 - 134
  • [5] Nordhaus-Gaddum results for the convex domination number of a graph
    M. Lemańska
    J. A. Rodríguez-Velázquez
    I. Gonzalez Yero
    Periodica Mathematica Hungarica, 2012, 65 : 125 - 134
  • [6] NORDHAUS-GADDUM TYPE RESULTS FOR CONNECTED AND TOTAL DOMINATION
    Khoeilar, Rana
    Karami, Hossein
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    RAIRO-OPERATIONS RESEARCH, 2021, 55 : S853 - S862
  • [7] Nordhaus-Gaddum type inequalities of the second Aα-eigenvalue of a graph
    Chen, Yuanyuan
    Li, Dan
    Meng, Jixiang
    Linear Algebra and Its Applications, 2020, 602 : 57 - 72
  • [8] Nordhaus-Gaddum type inequality for the fractional matching number of a graph
    Yang, Ting
    Yuan, Xiying
    DISCRETE APPLIED MATHEMATICS, 2022, 311 : 59 - 67
  • [9] Eigenvalue problems of Nordhaus-Gaddum type
    Nikiforov, Vladimir
    DISCRETE MATHEMATICS, 2007, 307 (06) : 774 - 780
  • [10] Nordhaus-Gaddum for treewidth
    Joret, Gwenael
    Wood, David R.
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (04) : 488 - 490