Covering the sphere by equal zones

被引:4
|
作者
Fodor, F. [1 ]
Vigh, V. [1 ]
Zarnocz, T. [1 ]
机构
[1] Univ Szeged, Bolyai Inst, Dept Geometry, Aradi Vertanuk Tere 1, H-6720 Szeged, Hungary
关键词
covering; sphere; Tarski's plank problem; zone;
D O I
10.1007/s10474-016-0613-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A zone of half-width w on the unit sphere S (2) in Euclidean 3-space is the parallel domain of radius w of a great circle. L. Fejes Tth raised the following question in [6]: what is the minimal w (n) such that one can cover S (2) with n zones of half-width w (n) ? This question can be considered as a spherical relative of the famous plank problem of Tarski. We prove lower bounds for the minimum half-width w (n) for all n a parts per thousand 5.
引用
收藏
页码:478 / 489
页数:12
相关论文
共 50 条
  • [41] Covering a sphere with N random circular caps
    Zheng, Youlu
    Mathematical Modelling and Scientific Computing, 1993, 2 (sectioA):
  • [42] PROBABILITY OF COVERING A SPHERE WITH N CIRCULAR CAPS
    GILBERT, EN
    BIOMETRIKA, 1965, 52 : 323 - &
  • [43] A minimum sphere covering approach to pattern classification
    Wang, Jigang
    Neskovic, Predrag
    Cooper, Leon N.
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 433 - +
  • [44] ON THE MULTIPLICITY OF ARRANGEMENTS OF CONGRUENT ZONES ON THE SPHERE
    Bezdek, Andras
    Fodor, Ferenc
    Vigh, Viktor
    Zarnocz, Tamas
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2024, 61 (03) : 262 - 273
  • [45] Wireless Sensor Networks and Covering of the Stripe with Equal Sectors
    Erzin, Adil
    Shabelnikova, Natalia
    Amirgaliyev, Yedilkhan
    2015 TWELVE INTERNATIONAL CONFERENCE ON ELECTRONICS COMPUTER AND COMPUTATION (ICECCO), 2015, : 13 - 16
  • [46] SOME EQUAL-AREA PROJECTIONS OF THE SPHERE
    Craster, J. E. E.
    GEOGRAPHICAL JOURNAL, 1929, 74 (05): : 471 - 474
  • [47] ON THE PROBLEM OF EQUAL-AREA BLOCK ON A SPHERE
    KLIMA, K
    PICK, M
    PROS, Z
    STUDIA GEOPHYSICA ET GEODAETICA, 1981, 25 (01) : 24 - 35
  • [48] CLOSEST PACKING OF EQUAL SPHERES IN A LARGER SPHERE
    BLACHMAN, NM
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (05): : 526 - &
  • [49] AN EFFICIENT SEARCH ALGORITHM FOR MINIMUM COVERING POLYGONS ON THE SPHERE
    Wang, Ning
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03): : A1669 - A1688
  • [50] ON REALIZATION OF DISTANCES WITHIN COVERING OF AN N-SPHERE
    LARMAN, DG
    MATHEMATIKA, 1967, 14 (28P2) : 203 - &