Covering the sphere by equal zones

被引:4
|
作者
Fodor, F. [1 ]
Vigh, V. [1 ]
Zarnocz, T. [1 ]
机构
[1] Univ Szeged, Bolyai Inst, Dept Geometry, Aradi Vertanuk Tere 1, H-6720 Szeged, Hungary
关键词
covering; sphere; Tarski's plank problem; zone;
D O I
10.1007/s10474-016-0613-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A zone of half-width w on the unit sphere S (2) in Euclidean 3-space is the parallel domain of radius w of a great circle. L. Fejes Tth raised the following question in [6]: what is the minimal w (n) such that one can cover S (2) with n zones of half-width w (n) ? This question can be considered as a spherical relative of the famous plank problem of Tarski. We prove lower bounds for the minimum half-width w (n) for all n a parts per thousand 5.
引用
收藏
页码:478 / 489
页数:12
相关论文
共 50 条
  • [31] On Covering of Cylindrical and Conical Surfaces with Equal Balls
    Kazakov, Alexander L.
    Lempert, Anna A.
    Nguyen, Duc Minh
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2024, 48 : 34 - 48
  • [32] The covering numbers of Mycielski ideals are all equal
    Shelah, S
    Stepräns, J
    JOURNAL OF SYMBOLIC LOGIC, 2001, 66 (02) : 707 - 718
  • [33] THE EQUAL-AREA ZONES PROPERTY
    RICHMOND, B
    RICHMOND, T
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (05): : 475 - 477
  • [34] Packing of equal regular pentagons on a sphere
    Tarnai, T
    Gáspár, Z
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2009): : 1043 - 1058
  • [35] THE DENSEST PACKING OF EQUAL CIRCLES ON A SPHERE
    KOTTWITZ, DA
    ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 : 158 - 165
  • [36] THE CLOSEST PACKING OF EQUAL CIRCLES ON A SPHERE
    CLARE, BW
    KEPERT, DL
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 405 (1829): : 329 - 344
  • [37] Optimal arrangements of equal circles on a sphere
    Z Angew Math Mech ZAMM, suppl 5 (515):
  • [38] Covering a sphere with N random circular caps
    Zheng, Youlu
    Mathematical Modelling and Scientific Computing, 1993, 2 (sectiob):
  • [39] IMPROVED SPHERE BOUNDS ON THE COVERING RADIUS OF CODES
    VANWEE, GJM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (02) : 237 - 245
  • [40] COVERING SPHERE WITH 2 PAIRS OF SMALL CIRCLES
    GOLDBERG, M
    BLUNDON, WJ
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (09): : 1055 - &