Covering the sphere by equal zones

被引:4
|
作者
Fodor, F. [1 ]
Vigh, V. [1 ]
Zarnocz, T. [1 ]
机构
[1] Univ Szeged, Bolyai Inst, Dept Geometry, Aradi Vertanuk Tere 1, H-6720 Szeged, Hungary
关键词
covering; sphere; Tarski's plank problem; zone;
D O I
10.1007/s10474-016-0613-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A zone of half-width w on the unit sphere S (2) in Euclidean 3-space is the parallel domain of radius w of a great circle. L. Fejes Tth raised the following question in [6]: what is the minimal w (n) such that one can cover S (2) with n zones of half-width w (n) ? This question can be considered as a spherical relative of the famous plank problem of Tarski. We prove lower bounds for the minimum half-width w (n) for all n a parts per thousand 5.
引用
收藏
页码:478 / 489
页数:12
相关论文
共 50 条
  • [21] Graphs with equal domination and covering numbers
    Andrzej Lingas
    Mateusz Miotk
    Jerzy Topp
    Paweł Żyliński
    Journal of Combinatorial Optimization, 2020, 39 : 55 - 71
  • [22] The sphere covering inequality and its applications
    Changfeng Gui
    Amir Moradifam
    Inventiones mathematicae, 2018, 214 : 1169 - 1204
  • [23] MINIMUM SPHERE COVERING A CONVEX POLYHEDRON
    ELZINGA, J
    HEARN, D
    NAVAL RESEARCH LOGISTICS, 1974, 21 (04) : 715 - 718
  • [24] The Sphere Covering Inequality and Its Dual
    Gui, Changfeng
    Hang, Fengbo
    Moradifam, Amir
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (12) : 2685 - 2707
  • [25] The sphere covering inequality and its applications
    Gui, Changfeng
    Moradifam, Amir
    INVENTIONES MATHEMATICAE, 2018, 214 (03) : 1169 - 1204
  • [26] Plotting crystal zones on the sphere
    Blake, JM
    AMERICAN JOURNAL OF SCIENCE, 1917, 43 (255) : 237 - 242
  • [27] Improved efficiency for covering codes matching the sphere-covering bound
    Potukuchi, Aditya
    Zhang, Yihan
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 102 - 107
  • [28] Characterization of graphs with equal domination and covering number
    Randerath, B
    Volkmann, L
    DISCRETE MATHEMATICS, 1998, 191 (1-3) : 159 - 169
  • [29] Covering a ball with smaller equal balls in Rn
    Verger-Gaugry, JL
    DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 33 (01) : 143 - 155
  • [30] Covering a Ball with Smaller Equal Balls in ℝn
    Jean-Louis Verger-Gaugry
    Discrete & Computational Geometry, 2005, 33 : 143 - 155