Existence of axially symmetric solutions for a kind of planar Schrodinger-Poisson system

被引:1
|
作者
Zhang, Qiongfen [1 ]
Chen, Kai [2 ]
Liu, Shuqin [1 ]
Fan, Jinmei [1 ]
机构
[1] Guilin Univ Technol, Sch Sci, Guilin 541004, Guangxi, Peoples R China
[2] Guilin Univ Aerosp Technol, Sch Sci, Guilin 541004, Guangxi, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 07期
基金
中国国家自然科学基金;
关键词
existence; axially symmetric; ground state solution; Logarithmic convolution potential; planar Schrodinger-Poisson system; EQUATIONS; MULTIPLICITY;
D O I
10.3934/math.2021455
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following kind of Schrodinger-Poisson system in R-2 {-Delta u + V(x)u +phi u = K(x)f(x), x is an element of R-2, Delta phi = u(2) x is an element of R-2, where f is an element of C(R , R), V(x) and K(x) are both axially symmetric functions. By constructing a new variational framework and using some new analytic techniques, we obtain an axially symmetric solution for the above planar system. Our result improves and extends the existing works.
引用
收藏
页码:7833 / 7844
页数:12
相关论文
共 50 条
  • [1] EXISTENCE OF GROUND STATE SOLUTIONS FOR THE PLANAR AXIALLY SYMMETRIC SCHRODINGER-POISSON SYSTEM
    Chen, Sitong
    Tang, Xianhua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (09): : 4685 - 4702
  • [2] On the planar Schrodinger-Poisson system with the axially symmetric potential
    Chen, Sitong
    Tang, Xianhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) : 945 - 976
  • [3] Axially symmetric solutions for the planar Schrodinger-Poisson system with critical exponential growth
    Chen, Sitong
    Tang, Xianhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9144 - 9174
  • [4] On the planar axially symmetric Schrodinger-Poisson systems with Choquard nonlinearity
    Chen, Wenjing
    Pan, Huayu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (01)
  • [5] On the existence of solutions for nonhomogeneous Schrodinger-Poisson system
    Wang, Lixia
    Ma, Shiwang
    Wang, Xiaoming
    BOUNDARY VALUE PROBLEMS, 2016,
  • [6] Existence and stability results for the planar Schrodinger-Poisson system
    Zhang, Guoqing
    Guo, Wenyan
    Zhang, Weiguo
    ARCHIV DER MATHEMATIK, 2016, 107 (05) : 561 - 568
  • [7] On the planar Schrodinger-Poisson system
    Cingolani, Silvia
    Weth, Tobias
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (01): : 169 - 197
  • [8] Existence of multiple nontrivial solutions for a Schrodinger-Poisson system
    Chen, Shaowei
    Wang, Conglei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 787 - 793
  • [9] On the existence of solutions for the Schrodinger-Poisson equations
    Zhao, Leiga
    Zhao, Fukun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (01) : 155 - 169
  • [10] Gravitational atoms: General framework for the construction of multistate axially symmetric solutions of the Schrodinger-Poisson system
    Guzman, F. S.
    Arturo Urena-Lopez, L.
    PHYSICAL REVIEW D, 2020, 101 (08)