Existence of axially symmetric solutions for a kind of planar Schrodinger-Poisson system

被引:1
|
作者
Zhang, Qiongfen [1 ]
Chen, Kai [2 ]
Liu, Shuqin [1 ]
Fan, Jinmei [1 ]
机构
[1] Guilin Univ Technol, Sch Sci, Guilin 541004, Guangxi, Peoples R China
[2] Guilin Univ Aerosp Technol, Sch Sci, Guilin 541004, Guangxi, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 07期
基金
中国国家自然科学基金;
关键词
existence; axially symmetric; ground state solution; Logarithmic convolution potential; planar Schrodinger-Poisson system; EQUATIONS; MULTIPLICITY;
D O I
10.3934/math.2021455
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following kind of Schrodinger-Poisson system in R-2 {-Delta u + V(x)u +phi u = K(x)f(x), x is an element of R-2, Delta phi = u(2) x is an element of R-2, where f is an element of C(R , R), V(x) and K(x) are both axially symmetric functions. By constructing a new variational framework and using some new analytic techniques, we obtain an axially symmetric solution for the above planar system. Our result improves and extends the existing works.
引用
收藏
页码:7833 / 7844
页数:12
相关论文
共 50 条
  • [41] The existence and concentration of positive solutions for a nonlinear Schrodinger-Poisson system with critical growth
    Zhang, Jianjun
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (03)
  • [42] Existence of Solutions for a Schrodinger-Poisson System with Critical Nonlocal Term and General Nonlinearity
    Zhang, Jiafeng
    Guo, Wei
    Chu, Changmu
    Suo, Hongmin
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [43] Existence and concentration behavior of solutions for the logarithmic Schrodinger-Poisson system with steep potential
    Peng, Xueqin
    Jia, Gao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [44] Existence of positive solutions for a Schrodinger-Poisson system with bounded potential and weighted functions in
    Yuan, Qing
    Chen, Caisheng
    Yang, Hongwei
    BOUNDARY VALUE PROBLEMS, 2017, : 1 - 17
  • [45] Multiple normalized solutions for the planar Schrodinger-Poisson system with critical exponential growth
    Chen, Sitong
    Radulescu, Vicentiu D.
    Tang, Xianhua
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (03)
  • [46] L(2) solutions to the Schrodinger-Poisson system
    Castella, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (12): : 1243 - 1248
  • [47] Solutions of a Schrodinger-Poisson system with combined nonlinearities
    Sun, Mingzheng
    Su, Jiabao
    Zhao, Leiga
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 385 - 403
  • [48] Existence of solutions to a class of Schrodinger-Poisson systems with indefinite nonlinearity
    Li, Fuyi
    Chang, Caihong
    Feng, Xiaojing
    APPLICABLE ANALYSIS, 2017, 96 (05) : 721 - 740
  • [49] Positive solutions for a nonhomogeneous Schrodinger-Poisson system
    Zhang, Jing
    Niu, Rui
    Han, Xiumei
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1201 - 1222
  • [50] POSITIVE SOLUTIONS FOR A NONLINEAR SCHRODINGER-POISSON SYSTEM
    Wang, Chunhua
    Yang, Jing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (11) : 5461 - 5504