Existence of axially symmetric solutions for a kind of planar Schrodinger-Poisson system

被引:1
|
作者
Zhang, Qiongfen [1 ]
Chen, Kai [2 ]
Liu, Shuqin [1 ]
Fan, Jinmei [1 ]
机构
[1] Guilin Univ Technol, Sch Sci, Guilin 541004, Guangxi, Peoples R China
[2] Guilin Univ Aerosp Technol, Sch Sci, Guilin 541004, Guangxi, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 07期
基金
中国国家自然科学基金;
关键词
existence; axially symmetric; ground state solution; Logarithmic convolution potential; planar Schrodinger-Poisson system; EQUATIONS; MULTIPLICITY;
D O I
10.3934/math.2021455
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following kind of Schrodinger-Poisson system in R-2 {-Delta u + V(x)u +phi u = K(x)f(x), x is an element of R-2, Delta phi = u(2) x is an element of R-2, where f is an element of C(R , R), V(x) and K(x) are both axially symmetric functions. By constructing a new variational framework and using some new analytic techniques, we obtain an axially symmetric solution for the above planar system. Our result improves and extends the existing works.
引用
收藏
页码:7833 / 7844
页数:12
相关论文
共 50 条
  • [31] Existence of Positive Solutions for the Nonhomogeneous Schrodinger-Poisson System with Strong Singularity
    Liao Jiafeng
    Chen Qingfang
    Zhu Lijun
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 34 (02): : 186 - 200
  • [32] Existence of multi-bump solutions for the fractional Schrodinger-Poisson system
    Liu, Weiming
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (09)
  • [33] The existence and multiplicity of solutions of a fractional Schrodinger-Poisson system with critical growth
    Yu, Yuanyang
    Zhao, Fukun
    Zhao, Leiga
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 1039 - 1062
  • [34] Bifurcation and regularity of entire solutions for the planar nonlinear Schrodinger-Poisson system
    Pucci, Patrizia
    Wang, Linlin
    Zhang, Binlin
    MATHEMATISCHE ANNALEN, 2024, 389 (04) : 4265 - 4300
  • [35] Existence and uniqueness of constraint minimizers for the planar Schrodinger-Poisson system with logarithmic potentials
    Guo, Yujin
    Liang, Wenning
    Li, Yan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 369 : 299 - 352
  • [36] The planar Schrodinger-Poisson system with a positive potential
    Azzollini, Antonio
    NONLINEARITY, 2021, 34 (08) : 5799 - 5820
  • [37] EXISTENCE AND CONCENTRATION OF SOLUTIONS FOR SUBLINEAR SCHRODINGER-POISSON EQUATIONS
    Mao, Anmin
    Chen, Yusong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02): : 339 - 348
  • [38] Existence of ground state solutions for the Schrodinger-Poisson systems
    Liu, Zhisu
    Guo, Shangjiang
    Zhang, Ziheng
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 312 - 323
  • [39] Existence and nonexistence of nontrivial solutions for the Schrodinger-Poisson system with zero mass potential
    Wang, Xiaoping
    Chen, Fulai
    Liao, Fangfang
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [40] Existence and Multiplicity of Solutions for a Fractional Schrodinger-Poisson System with Subcritical or Critical Growth
    Gu, Guangze
    Mu, Changyang
    Yang, Zhipeng
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (02)