STRONGER SUM-PRODUCT INEQUALITIES FOR SMALL SETS

被引:10
|
作者
Rudnev, M. [1 ]
Shakan, G. [2 ]
Shkredov, I. D. [3 ,4 ,5 ]
机构
[1] Univ Bristol, Fry Bldg,Woodland Rd, Bristol BS8 1UG, Avon, England
[2] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[3] Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
[4] RAS, IITP, Bolshoy Karetny 19, Moscow 127994, Russia
[5] MIPT, Inst Skii 9, Dolgoprudnyi 14170, Russia
基金
俄罗斯科学基金会;
关键词
Sum-product phenomenon;
D O I
10.1090/proc/14902
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a field and let a finite A subset of F be sufficiently small in terms of the characteristic p of F if p > 0. We strengthen the "threshold" sum-product inequality vertical bar AA vertical bar(3)vertical bar A +/- A vertical bar(2) >> vertical bar A vertical bar(6), hence vertical bar AA vertical bar + vertical bar A + A vertical bar >> vertical bar A vertical bar(1+ 1/5), due to Roche-Newton, Rudnev, and Shkredov, to vertical bar AA vertical bar(5)vertical bar A +/- A vertical bar(4) >> vertical bar A vertical bar(11-o(1)), hence vertical bar AA vertical bar + vertical bar A +/- A vertical bar >> vertical bar A vertical bar(1+2/9-o(1)), as well as vertical bar AA vertical bar(36)vertical bar A - A vertical bar(24) >> vertical bar A vertical bar(73-o(1)). The latter inequality is "threshold-breaking", for it shows for epsilon > 0, one has vertical bar AA vertical bar <= vertical bar A vertical bar(1+epsilon) double right arrow vertical bar A - A vertical bar >> vertical bar A vertical bar(3/2+c(epsilon)), with c(epsilon) > 0 if epsilon is sufficiently small.
引用
收藏
页码:1467 / 1479
页数:13
相关论文
共 50 条
  • [41] VARIATIONS ON THE SUM-PRODUCT PROBLEMS II
    Murphy, Brendan
    Roche-Newton, Oliver
    Shkredov, Ilya D.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (03) : 1878 - 1894
  • [42] An Explicit Sum-Product Estimate in Fp
    Garaev, M. Z.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [43] Sum-Product decoding of convolutional codes
    Shohon, Toshiyuki
    Ogawa, Yuuichi
    Ogiwara, Haruo
    IWSDA'09: PROCEEDINGS OF THE FOURTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS, 2009, : 64 - +
  • [44] Sum-product for real Lie groups
    He, Weikun
    de Saxce, Nicolas
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (06) : 2127 - 2151
  • [45] The sum-product algorithm on simple graphs
    O'Sullivan, Michael. E.
    Brevik, John
    Vargo, Shayne. M.
    2009 INFORMATION THEORY AND APPLICATIONS WORKSHOP, 2009, : 248 - +
  • [46] Visualizing and understanding Sum-Product Networks
    Vergari, Antonio
    Di Mauro, Nicola
    Esposito, Floriana
    MACHINE LEARNING, 2019, 108 (04) : 551 - 573
  • [47] Visualizing and understanding Sum-Product Networks
    Antonio Vergari
    Nicola Di Mauro
    Floriana Esposito
    Machine Learning, 2019, 108 : 551 - 573
  • [48] Convexity and a sum-product type estimate
    Li, Liangpan
    Roche-Newton, Oliver
    ACTA ARITHMETICA, 2012, 156 (03) : 247 - 255
  • [49] The discretized sum-product and projection theorems
    Jean Bourgain
    Journal d'Analyse Mathématique, 2010, 112 : 193 - 236
  • [50] GCD sums and sum-product estimates
    Thomas F. Bloom
    Aled Walker
    Israel Journal of Mathematics, 2020, 235 : 1 - 11