STRONGER SUM-PRODUCT INEQUALITIES FOR SMALL SETS

被引:10
|
作者
Rudnev, M. [1 ]
Shakan, G. [2 ]
Shkredov, I. D. [3 ,4 ,5 ]
机构
[1] Univ Bristol, Fry Bldg,Woodland Rd, Bristol BS8 1UG, Avon, England
[2] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[3] Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
[4] RAS, IITP, Bolshoy Karetny 19, Moscow 127994, Russia
[5] MIPT, Inst Skii 9, Dolgoprudnyi 14170, Russia
基金
俄罗斯科学基金会;
关键词
Sum-product phenomenon;
D O I
10.1090/proc/14902
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a field and let a finite A subset of F be sufficiently small in terms of the characteristic p of F if p > 0. We strengthen the "threshold" sum-product inequality vertical bar AA vertical bar(3)vertical bar A +/- A vertical bar(2) >> vertical bar A vertical bar(6), hence vertical bar AA vertical bar + vertical bar A + A vertical bar >> vertical bar A vertical bar(1+ 1/5), due to Roche-Newton, Rudnev, and Shkredov, to vertical bar AA vertical bar(5)vertical bar A +/- A vertical bar(4) >> vertical bar A vertical bar(11-o(1)), hence vertical bar AA vertical bar + vertical bar A +/- A vertical bar >> vertical bar A vertical bar(1+2/9-o(1)), as well as vertical bar AA vertical bar(36)vertical bar A - A vertical bar(24) >> vertical bar A vertical bar(73-o(1)). The latter inequality is "threshold-breaking", for it shows for epsilon > 0, one has vertical bar AA vertical bar <= vertical bar A vertical bar(1+epsilon) double right arrow vertical bar A - A vertical bar >> vertical bar A vertical bar(3/2+c(epsilon)), with c(epsilon) > 0 if epsilon is sufficiently small.
引用
收藏
页码:1467 / 1479
页数:13
相关论文
共 50 条
  • [31] Dual Sum-Product Networks Autoencoding
    Wang, Shengsheng
    Zhang, Hang
    Liu, Jiayun
    Yu, Qiang-Yuan
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2018), PT I, 2018, 11061 : 377 - 387
  • [32] Bayesian Learning of Sum-Product Networks
    Trapp, Martin
    Peharz, Robert
    Ge, Hong
    Pernkopf, Franz
    Ghahramani, Zoubin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [33] Sum-Product Decoding of BCH Codes
    Ogiwara, Haruo
    Shimamura, Kyouhei
    Shohon, Toshiyuki
    2008 5TH INTERNATIONAL SYMPOSIUM ON TURBO CODES AND RELATED TOPICS, 2008, : 373 - 378
  • [34] ON THE DISCRETISED ABC SUM-PRODUCT PROBLEM
    Orponen, Tuomas
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (07) : 4647 - 4702
  • [35] Sum-product estimates for rational functions
    Bukh, Boris
    Tsimerman, Jacob
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 : 1 - 26
  • [36] Asymmetric estimates and the sum-product problems
    Xue, Boqing
    ACTA ARITHMETICA, 2021, 198 (03) : 289 - 311
  • [37] The discretized sum-product and projection theorems
    Bourgain, Jean
    JOURNAL D ANALYSE MATHEMATIQUE, 2010, 112 : 193 - 236
  • [38] Learning Relational Sum-Product Networks
    Nath, Aniruddh
    Domingos, Pedro
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2878 - 2886
  • [39] AN IMPROVED SUM-PRODUCT BOUND FOR QUATERNIONS
    Basit, Abdul
    Lund, Ben
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (02) : 1044 - 1060
  • [40] Sum-product theorems and incidence geometry
    Chang, Mei-Chu
    Solymosi, Jozsef
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2007, 9 (03) : 545 - 560