STRONGER SUM-PRODUCT INEQUALITIES FOR SMALL SETS

被引:10
|
作者
Rudnev, M. [1 ]
Shakan, G. [2 ]
Shkredov, I. D. [3 ,4 ,5 ]
机构
[1] Univ Bristol, Fry Bldg,Woodland Rd, Bristol BS8 1UG, Avon, England
[2] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[3] Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
[4] RAS, IITP, Bolshoy Karetny 19, Moscow 127994, Russia
[5] MIPT, Inst Skii 9, Dolgoprudnyi 14170, Russia
基金
俄罗斯科学基金会;
关键词
Sum-product phenomenon;
D O I
10.1090/proc/14902
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a field and let a finite A subset of F be sufficiently small in terms of the characteristic p of F if p > 0. We strengthen the "threshold" sum-product inequality vertical bar AA vertical bar(3)vertical bar A +/- A vertical bar(2) >> vertical bar A vertical bar(6), hence vertical bar AA vertical bar + vertical bar A + A vertical bar >> vertical bar A vertical bar(1+ 1/5), due to Roche-Newton, Rudnev, and Shkredov, to vertical bar AA vertical bar(5)vertical bar A +/- A vertical bar(4) >> vertical bar A vertical bar(11-o(1)), hence vertical bar AA vertical bar + vertical bar A +/- A vertical bar >> vertical bar A vertical bar(1+2/9-o(1)), as well as vertical bar AA vertical bar(36)vertical bar A - A vertical bar(24) >> vertical bar A vertical bar(73-o(1)). The latter inequality is "threshold-breaking", for it shows for epsilon > 0, one has vertical bar AA vertical bar <= vertical bar A vertical bar(1+epsilon) double right arrow vertical bar A - A vertical bar >> vertical bar A vertical bar(3/2+c(epsilon)), with c(epsilon) > 0 if epsilon is sufficiently small.
引用
收藏
页码:1467 / 1479
页数:13
相关论文
共 50 条
  • [21] Convergence of the sum-product algorithm
    Tatikonda, SC
    2003 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, 2003, : 222 - 225
  • [22] Sum-product graphical models
    Desana, Mattia
    Schnoerr, Christoph
    MACHINE LEARNING, 2020, 109 (01) : 135 - 173
  • [23] On sum sets of sets having small product set
    S. V. Konyagin
    I. D. Shkredov
    Proceedings of the Steklov Institute of Mathematics, 2015, 290 : 288 - 299
  • [24] On sum sets of sets having small product set
    Konyagin, S. V.
    Shkredov, I. D.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 290 (01) : 288 - 299
  • [25] Sum-Product Decoding of BCH Codes
    Ogiwara, Haruo
    Shimamura, Kyouhei
    Shohon, Toshiyuki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2008, E91A (10) : 2729 - 2736
  • [26] On Learning the Structure of Sum-Product Networks
    Butz, Cory J.
    Oliveira, Jhonatan S.
    dos Santos, Andre E.
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 2997 - 3004
  • [27] On Theoretical Properties of Sum-Product Networks
    Peharz, Robert
    Tschiatschek, Sebastian
    Pernkopf, Franz
    Domingos, Pedro
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 744 - 752
  • [28] On the energy variant of the sum-product conjecture
    Rudnev, Misha
    Shkredov, Ilya D.
    Stevens, Sophie
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (01) : 207 - 232
  • [29] A Sum-Product Theorem in Function Fields
    Bloom, Thomas F.
    Jones, Timothy G. F.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (19) : 5249 - 5263
  • [30] Anytime Learning of Sum-Product and Sum-Product-Max Networks
    Pawar, Swaraj
    Doshi, Prashant
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 186, 2022, 186