2-Approximating Feedback Vertex Set in Tournaments

被引:0
|
作者
Lokshtanov, Daniel [1 ]
Misra, Pranabendu [2 ]
Mukherjee, Joydeep [3 ,4 ]
Panolan, Fahad [5 ]
Philip, Geevarghese [6 ,7 ]
Saurabh, Saket [7 ,8 ,9 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[2] Max Planck Inst Informat, Saarbrucken, Germany
[3] Indian Stat Inst, Kolkata, India
[4] Ramakrishna Mission Vivekananda Educ & Res Inst, Kolkata, India
[5] Indian Inst Technol, Hyderabad, India
[6] Chennai Math Inst, Chennai, Tamil Nadu, India
[7] IRL 2000 ReLaX, Chennai, Tamil Nadu, India
[8] HBNI, Inst Math Sci, Chennai, Tamil Nadu, India
[9] Univ Bergen, Bergen, Norway
基金
欧洲研究理事会;
关键词
APPROXIMATION ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A tournament is a directed graph T such that every pair of vertices is connected by an arc. A feedback vertex set is a set S of vertices in T such that T - S is acyclic. We consider the FEEDBACK VERTEX SET problem in tournaments. Here the input is a tournament T and a weight function w : V(T) -> N and the task is to find a feedback vertex set S in T minimizing w(S) = Sigma(v is an element of S) w(v). Rounding optimal solutions to the natural LP-relaxation of this problem yields a simple 3-approximation algorithm. This has been improved to 2.5 by Cai et al. [SICOMP 2000], and subsequently to 7/3 by Mnich et al. [ESA 2016]. In this paper we give the first polynomial time factor 2 approximation algorithm for this problem. Assuming the Unique Games conjecture, this is the best possible approximation ratio achievable in polynomial time.
引用
收藏
页码:1010 / 1018
页数:9
相关论文
共 50 条
  • [41] A Polynomial Kernel for FEEDBACK ARC SET on Bipartite Tournaments
    Misra, Pranabendu
    Raman, Venkatesh
    Ramanujan, M. S.
    Saurabh, Saket
    ALGORITHMS AND COMPUTATION, 2011, 7074 : 333 - +
  • [42] A Polynomial Kernel for FEEDBACK ARC SET on Bipartite Tournaments
    Misra, Pranabendu
    Raman, Venkatesh
    Ramanujan, M. S.
    Saurabh, Saket
    THEORY OF COMPUTING SYSTEMS, 2013, 53 (04) : 609 - 620
  • [43] A Polynomial Kernel for Feedback Arc Set on Bipartite Tournaments
    Pranabendu Misra
    Venkatesh Raman
    M. S. Ramanujan
    Saket Saurabh
    Theory of Computing Systems, 2013, 53 : 609 - 620
  • [44] Algorithms and Kernels for Feedback Set Problems in Generalizations of Tournaments
    Bang-Jensen, Jorgen
    Maddaloni, Alessandro
    Saurabh, Saket
    ALGORITHMICA, 2016, 76 (02) : 320 - 343
  • [45] Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2019, 15 (01)
  • [46] An eccentricity 2-approximating spanning tree of a chordal graph is computable in linear time
    Dragan, Feodor F.
    INFORMATION PROCESSING LETTERS, 2020, 154
  • [47] A 2-approximation algorithm for the undirected feedback vertex set problem
    Bafna, V
    Berman, P
    Fujito, T
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (03) : 289 - 297
  • [48] Polyhedral aspects of feedback vertex set and pseudoforest deletion set
    Chandrasekaran, Karthekeyan
    Chekuri, Chandra
    Fiorini, Samuel
    Kulkarni, Shubhang
    Weltge, Stefan
    MATHEMATICAL PROGRAMMING, 2025,
  • [49] Simple Proof of Hardness of Feedback Vertex Set
    Guruswami, Venkatesan
    Lee, Euiwoong
    THEORY OF COMPUTING, 2016, 12
  • [50] Feedback Vertex Set in Alternating Group Graphs
    Wang, Jian
    Xu, Xirong
    Gao, Liqing
    Zhu, Dejun
    Yang, Yuansheng
    UTILITAS MATHEMATICA, 2017, 103 : 237 - 243