2-Approximating Feedback Vertex Set in Tournaments

被引:0
|
作者
Lokshtanov, Daniel [1 ]
Misra, Pranabendu [2 ]
Mukherjee, Joydeep [3 ,4 ]
Panolan, Fahad [5 ]
Philip, Geevarghese [6 ,7 ]
Saurabh, Saket [7 ,8 ,9 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[2] Max Planck Inst Informat, Saarbrucken, Germany
[3] Indian Stat Inst, Kolkata, India
[4] Ramakrishna Mission Vivekananda Educ & Res Inst, Kolkata, India
[5] Indian Inst Technol, Hyderabad, India
[6] Chennai Math Inst, Chennai, Tamil Nadu, India
[7] IRL 2000 ReLaX, Chennai, Tamil Nadu, India
[8] HBNI, Inst Math Sci, Chennai, Tamil Nadu, India
[9] Univ Bergen, Bergen, Norway
基金
欧洲研究理事会;
关键词
APPROXIMATION ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A tournament is a directed graph T such that every pair of vertices is connected by an arc. A feedback vertex set is a set S of vertices in T such that T - S is acyclic. We consider the FEEDBACK VERTEX SET problem in tournaments. Here the input is a tournament T and a weight function w : V(T) -> N and the task is to find a feedback vertex set S in T minimizing w(S) = Sigma(v is an element of S) w(v). Rounding optimal solutions to the natural LP-relaxation of this problem yields a simple 3-approximation algorithm. This has been improved to 2.5 by Cai et al. [SICOMP 2000], and subsequently to 7/3 by Mnich et al. [ESA 2016]. In this paper we give the first polynomial time factor 2 approximation algorithm for this problem. Assuming the Unique Games conjecture, this is the best possible approximation ratio achievable in polynomial time.
引用
收藏
页码:1010 / 1018
页数:9
相关论文
共 50 条
  • [21] Faster deterministic FEEDBACK VERTEX SET
    Kociumaka, Tomasz
    Pilipczuk, Marcin
    INFORMATION PROCESSING LETTERS, 2014, 114 (10) : 556 - 560
  • [22] A 4k2 Kernel for Feedback Vertex Set
    Thomasse, Stephan
    ACM TRANSACTIONS ON ALGORITHMS, 2010, 6 (02)
  • [23] On Parameterized Independent Feedback Vertex Set
    Misra, Neeldhara
    Philip, Geevarghese
    Raman, Venkatesh
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2012, 461 : 65 - 75
  • [24] On the kernelization of ranking r-CSPs: Linear vertex-kernels for generalizations of FEEDBACK ARC SET and BETWEENNESS in tournaments
    Perez, Anthony
    DISCRETE APPLIED MATHEMATICS, 2015, 186 : 214 - 225
  • [25] FEEDBACK VERTEX SET ON PLANAR GRAPHS
    Chen, Hong-Bin
    Fu, Hung-Lin
    Shih, Chie-Huai
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06): : 2077 - 2082
  • [26] Parameterized algorithms for feedback vertex set
    Kanj, I
    Pelsmajer, M
    Schaefer, M
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 235 - 247
  • [27] PARALLELISM AND THE FEEDBACK VERTEX SET PROBLEM
    BOVET, DP
    DEAGOSTINO, S
    PETRESCHI, R
    INFORMATION PROCESSING LETTERS, 1988, 28 (02) : 81 - 85
  • [28] Feedback Vertex Set in Mixed Graphs
    Bonsma, Paul
    Lokshtanov, Daniel
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 122 - +
  • [29] Parameter Ecology for Feedback Vertex Set
    Jansen, Bart M. P.
    Raman, Venkatesh
    Vatshelle, Martin
    TSINGHUA SCIENCE AND TECHNOLOGY, 2014, 19 (04) : 387 - 409
  • [30] Parameter Ecology for Feedback Vertex Set
    Bart M.P.Jansen
    Venkatesh Raman
    Martin Vatshelle
    Tsinghua Science and Technology, 2014, 19 (04) : 387 - 409