2-Approximating Feedback Vertex Set in Tournaments

被引:0
|
作者
Lokshtanov, Daniel [1 ]
Misra, Pranabendu [2 ]
Mukherjee, Joydeep [3 ,4 ]
Panolan, Fahad [5 ]
Philip, Geevarghese [6 ,7 ]
Saurabh, Saket [7 ,8 ,9 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[2] Max Planck Inst Informat, Saarbrucken, Germany
[3] Indian Stat Inst, Kolkata, India
[4] Ramakrishna Mission Vivekananda Educ & Res Inst, Kolkata, India
[5] Indian Inst Technol, Hyderabad, India
[6] Chennai Math Inst, Chennai, Tamil Nadu, India
[7] IRL 2000 ReLaX, Chennai, Tamil Nadu, India
[8] HBNI, Inst Math Sci, Chennai, Tamil Nadu, India
[9] Univ Bergen, Bergen, Norway
基金
欧洲研究理事会;
关键词
APPROXIMATION ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A tournament is a directed graph T such that every pair of vertices is connected by an arc. A feedback vertex set is a set S of vertices in T such that T - S is acyclic. We consider the FEEDBACK VERTEX SET problem in tournaments. Here the input is a tournament T and a weight function w : V(T) -> N and the task is to find a feedback vertex set S in T minimizing w(S) = Sigma(v is an element of S) w(v). Rounding optimal solutions to the natural LP-relaxation of this problem yields a simple 3-approximation algorithm. This has been improved to 2.5 by Cai et al. [SICOMP 2000], and subsequently to 7/3 by Mnich et al. [ESA 2016]. In this paper we give the first polynomial time factor 2 approximation algorithm for this problem. Assuming the Unique Games conjecture, this is the best possible approximation ratio achievable in polynomial time.
引用
收藏
页码:1010 / 1018
页数:9
相关论文
共 50 条
  • [31] A quadratic kernel for feedback vertex set
    Thomasse, Stephan
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 115 - 119
  • [32] The price of connectivity for feedback vertex set
    Belmonte, Remy
    van't Hof, Pim
    Kaminski, Marcin
    Paulusma, Daniel
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 132 - 143
  • [33] Outerplanar obstructions for a feedback vertex set
    Rue, Juanjo
    Stavropoulos, Konstantinos S.
    Thilikos, Dimitrios M.
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (05) : 948 - 968
  • [34] FEEDBACK VERTEX SET ON COCOMPARABILITY GRAPHS
    COORG, SR
    RANGAN, CP
    NETWORKS, 1995, 26 (02) : 101 - 111
  • [35] A cubic kernel for Feedback Vertex Set
    Bodlaender, Hans L.
    Stacs 2007, Proceedings, 2007, 4393 : 320 - 331
  • [36] Parameterized complexity of directed feedback set problems in tournaments
    Raman, V
    Saurabh, S
    ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2003, 2748 : 484 - 492
  • [37] Parameterized algorithms for feedback set problems and their duals in tournaments
    Raman, V
    Saurabh, S
    THEORETICAL COMPUTER SCIENCE, 2006, 351 (03) : 446 - 458
  • [38] A better LP rounding for feedback arc set on tournaments
    Ostovari, Mojtaba
    Zarei, Alireza
    THEORETICAL COMPUTER SCIENCE, 2024, 1015
  • [39] Algorithms and Kernels for Feedback Set Problems in Generalizations of Tournaments
    Jørgen Bang-Jensen
    Alessandro Maddaloni
    Saket Saurabh
    Algorithmica, 2016, 76 : 320 - 343
  • [40] Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 1383 - 1398