Fractional Diffusion with Geometric Constraints: Application to Signal Decay in Magnetic Resonance Imaging (MRI)

被引:6
|
作者
Lenzi, Ervin K. [1 ]
Ribeiro, Haroldo V. [2 ]
Lenzi, Marcelo K. [3 ]
Evangelista, Luiz R. [2 ]
Magin, Richard L. [4 ]
机构
[1] Univ Estadual Ponta Grossa, Dept Fis, BR-84040900 Ponta Grossa, Parana, Brazil
[2] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[3] Univ Fed Parana, Dept Engnh Quim, Av Cel Francisco H Santos 210, BR-81531980 Curitiba, Parana, Brazil
[4] Univ Illinois, Dept Biomed Engn, Chicago, IL 60607 USA
关键词
comb model; fractional diffusion equation; memory effects; anomalous diffusion; magnetic resonance imaging; ANOMALOUS DIFFUSION; MODELS;
D O I
10.3390/math10030389
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate diffusion in three dimensions on a comb-like structure in which the particles move freely in a plane, but, out of this plane, are constrained to move only in the perpendicular direction. This model is an extension of the two-dimensional version of the comb model, which allows diffusion along the backbone when the particles are not in the branches. We also consider memory effects, which may be handled with different fractional derivative operators involving singular and non-singular kernels. We find exact solutions for the particle distributions in this model that display normal and anomalous diffusion regimes when the mean-squared displacement is determined. As an application, we use this model to fit the anisotropic diffusion of water along and across the axons in the optic nerve using magnetic resonance imaging. The results for the observed diffusion times (8 to 30 milliseconds) show an anomalous diffusion both along and across the fibers.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Breast Magnetic Resonance Imaging (MRI)
    Sharma U.
    Sharma R.
    Jagannathan N.R.
    eMagRes, 2010, 2010
  • [32] A concise continuous time random-walk diffusion model for characterization of non-exponential signal decay in magnetic resonance imaging
    Yu, Yue
    Liang, Yingjie
    MAGNETIC RESONANCE IMAGING, 2023, 103 : 84 - 91
  • [33] Magnetic resonance imaging (MRI) in pelvimetry
    Kühnert, M
    Kühnert, A
    2ND INTERNATIONAL CONGRESS ON NEW TECHNOLOGIES IN REPRODUCTIVE MEDICINE, NEONATOLOGY AND GYNECOLOGY, 1999, : 367 - 372
  • [34] Geometric Distortion in Structural Magnetic Resonance Imaging
    Wang, Deming
    Doddrell, David M.
    CURRENT MEDICAL IMAGING REVIEWS, 2005, 1 (01) : 49 - 60
  • [35] Signal-to-noise ratio of diffusion weighted magnetic resonance imaging: Estimation methods and in vivo application to spinal cord
    Griffanti, Ludovica
    Baglio, Francesca
    Preti, Maria Giulia
    Cecconi, Pietro
    Rovaris, Marco
    Baselli, Giuseppe
    Lagana, Maria Marcella
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2012, 7 (03) : 285 - 294
  • [36] Distortion Inherent to Magnetic Resonance Imaging (MRI) Can Lead to Geometric Miss in Radiosurgery Planning
    Seibert, T.
    White, N. S.
    Kim, G.
    McDonald, C. R.
    Farid, N.
    Moiseenko, V.
    Bartsch, H.
    Kuperman, J.
    Holland, D.
    Mundt, A. J.
    Dale, A. M.
    Hattangadi-Gluth, J. A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 90 : S97 - S97
  • [37] Diffusion magnetic resonance imaging of thorax
    Karaman, Adem
    Kahraman, Mustafa
    Bozdogan, Erol
    Alper, Fatih
    Akgun, Metin
    TUBERKULOZ VE TORAK-TUBERCULOSIS AND THORAX, 2014, 62 (03): : 215 - 230
  • [38] Diffusion Magnetic Resonance Imaging of the Breast
    Arantes Pereira, Fernanda Philadelpho
    Martins, Gabriela
    Carvalhaes de Oliveira, Raquel de Vasconcellos
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2011, 19 (01) : 95 - +
  • [39] Diffusion tensor magnetic resonance imaging
    Gulani, V
    Sundgren, PC
    JOURNAL OF NEURO-OPHTHALMOLOGY, 2006, 26 (01) : 51 - 60
  • [40] Diffusion Magnetic Resonance Imaging of Infants
    Neil, Jeffrey J.
    Smyser, Christopher D.
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2021, 29 (02) : 185 - 193