Fractional Diffusion with Geometric Constraints: Application to Signal Decay in Magnetic Resonance Imaging (MRI)

被引:6
|
作者
Lenzi, Ervin K. [1 ]
Ribeiro, Haroldo V. [2 ]
Lenzi, Marcelo K. [3 ]
Evangelista, Luiz R. [2 ]
Magin, Richard L. [4 ]
机构
[1] Univ Estadual Ponta Grossa, Dept Fis, BR-84040900 Ponta Grossa, Parana, Brazil
[2] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[3] Univ Fed Parana, Dept Engnh Quim, Av Cel Francisco H Santos 210, BR-81531980 Curitiba, Parana, Brazil
[4] Univ Illinois, Dept Biomed Engn, Chicago, IL 60607 USA
关键词
comb model; fractional diffusion equation; memory effects; anomalous diffusion; magnetic resonance imaging; ANOMALOUS DIFFUSION; MODELS;
D O I
10.3390/math10030389
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate diffusion in three dimensions on a comb-like structure in which the particles move freely in a plane, but, out of this plane, are constrained to move only in the perpendicular direction. This model is an extension of the two-dimensional version of the comb model, which allows diffusion along the backbone when the particles are not in the branches. We also consider memory effects, which may be handled with different fractional derivative operators involving singular and non-singular kernels. We find exact solutions for the particle distributions in this model that display normal and anomalous diffusion regimes when the mean-squared displacement is determined. As an application, we use this model to fit the anisotropic diffusion of water along and across the axons in the optic nerve using magnetic resonance imaging. The results for the observed diffusion times (8 to 30 milliseconds) show an anomalous diffusion both along and across the fibers.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Scheduling with dynamic constraints in application to Magnetic Resonance Imaging scans processing
    Ivanov, E. N.
    Pogromsky, A. Yu
    Rooda, J. E.
    2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 873 - 877
  • [22] Principle and Clinical Application of Diffusion weight Imaging- Magnetic Resonance Imaging
    Kim, Joo-Ho
    Ji, Young-Seok
    Han, Man-Seok
    JOURNAL OF THE KOREAN MAGNETICS SOCIETY, 2024, 34 (01): : 15 - 19
  • [23] Decay of a Roman age pine wood studied by micro magnetic resonance imaging, diffusion nuclear magnetic resonance and portable nuclear magnetic resonance
    Stagno, Valeria
    Capuani, Silvia
    ACTA IMEKO, 2022, 11 (01):
  • [24] Diffusion-weighted magnetic resonance imaging (MRI) in different parkinsonian disorders
    Schocke, MF
    Seppl, K
    Esterhammer, R
    Kremser, C
    Wenning, GK
    Jaschke, WR
    RADIOLOGY, 2001, 221 : 241 - 241
  • [25] Rhombencephalitis in Children: Diffusion Magnetic Resonance Imaging (MRI) Correlation With Clinical Outcomes
    Wong, Alex Mun-Ching
    Yeh, Chih-Hua
    Lin, Jainn-Jim
    Chou, I-Jun
    Lin, Kuang-Lin
    JOURNAL OF CHILD NEUROLOGY, 2020, 35 (06) : 404 - 409
  • [26] Spatial transformations of diffusion tensor magnetic resonance imaging using certain geometric operations
    Bahuguna, Sandeep K.
    Petwal, Kailash C.
    INTERNATIONAL JOURNAL OF THE PHYSICAL SCIENCES, 2010, 5 (07): : 940 - 954
  • [27] Heterogeneity of Magnetic Resonance Imaging Apparent Diffusion Coefficient Signal in Radiation Necrosis
    Sanghvi, D.
    Redij, A.
    Kulkarni, B.
    CLINICAL ONCOLOGY, 2019, 31 (07) : E121 - E121
  • [28] PCATMIP: Enhancing Signal Intensity in Diffusion-Weighted Magnetic Resonance Imaging
    Pai, V. M.
    Rapacchi, S.
    Kellman, P.
    Croisille, P.
    Wen, H.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (06) : 1611 - 1619
  • [29] Magnetic Nanoparticles; Synthesis, Characterization and Application as Contrast Agent in Magnetic Resonance Imaging (MRI)
    Yadav, Ravi S.
    Sharma, Vinay
    Kuanr, Bijoy K.
    ADVANCED SCIENCE LETTERS, 2014, 20 (7-9) : 1548 - 1550
  • [30] Cardiac magnetic resonance imaging (MRI)
    Vignaux, O
    PRESSE MEDICALE, 2004, 33 (13): : 891 - 895