Dynamics of a vortex in a trapped Bose-Einstein condensate

被引:116
|
作者
Svidzinsky, AA [1 ]
Fetter, AL [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
来源
PHYSICAL REVIEW A | 2000年 / 62卷 / 06期
关键词
D O I
10.1103/PhysRevA.62.063617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a large condensate in a rotating anisotropic harmonic trap. Using the method of matched asymptotic expansions, we derive the velocity of an element of a vortex line as a function of the local gradient of the trap potential, the line curvature, and the angular velocity of the trap rotation. This velocity yields small-amplitude normal modes of the vortex for two-dimensional (2D) and 3D condensates. For an axisymmetric trap, the motion of the vortex line is a superposition of plane-polarized standing-wave modes. In a 2D condensate, the planar normal modes are degenerate, and their superposition can result in helical traveling np waves, which differs from a 3D condensate. Including the effects of trap rotation allows us to find the angular velocity that makes the vortex locally stable. For a cigar-shaped condensate, the vortex curvature makes a significant contribution to the frequency of the lowest unstable normal mode; furthermore, additional modes with negative frequencies appear. As a result, it is considerably more difficult to stabilize a central vortex in a cigar-shaped condensate than in a disk-shaped one. Normal modes with imaginary frequencies can occur for a nonaxisymmetric condensate (in both 2D and 3D). In connection with recent JILA experiments, we consider the motion of a straight vortex line in a slightly nonspherical condensate. The vortex line changes its orientation in space at the rate proportional to the degree of trap anisotropy and can exhibit periodic recurrences.
引用
收藏
页码:063617 / 063611
页数:14
相关论文
共 50 条
  • [41] Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates
    Tao Yang
    Zhi-Qiang Hu
    Shan Zou
    Wu-Ming Liu
    Scientific Reports, 6
  • [42] Coherent dynamics of vortex formation in trapped Bose-Einstein condensates
    Caradoc-Davies, BM
    Ballagh, RJ
    Burnett, K
    PHYSICAL REVIEW LETTERS, 1999, 83 (05) : 895 - 898
  • [43] Vortex line and ring dynamics in trapped Bose-Einstein condensates
    Jackson, B
    McCann, JF
    Adams, CS
    PHYSICAL REVIEW A, 2000, 61 (01): : 7
  • [44] Route to turbulence in a trapped Bose-Einstein condensate
    Seman, J. A.
    Henn, E. A. L.
    Shiozaki, R. F.
    Roati, G.
    Poveda-Cuevas, F. J.
    Magalhaes, K. M. F.
    Yukalov, V. I.
    Tsubota, M.
    Kobayashi, M.
    Kasamatsu, K.
    Bagnato, V. S.
    LASER PHYSICS LETTERS, 2011, 8 (09) : 691 - 696
  • [45] Vortices in a trapped dilute Bose-Einstein condensate
    Fetter, AL
    Svidzinsky, AA
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (12) : R135 - R194
  • [46] Anomalous effects in a trapped Bose-Einstein condensate
    Benarous, Mohamed
    EUROPEAN PHYSICAL JOURNAL D, 2013, 67 (11):
  • [47] Reservoir interactions of a vortex in a trapped three-dimensional Bose-Einstein condensate
    Rooney, S. J.
    Allen, A. J.
    Zulicke, U.
    Proukakis, N. P.
    Bradley, A. S.
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [48] Vortex creation in a trapped Bose-Einstein condensate by stimulated Raman adiabatic passage
    Nandi, G
    Walser, R
    Schleich, WP
    PHYSICAL REVIEW A, 2004, 69 (06): : 063606 - 1
  • [49] Anomalous effects in a trapped Bose-Einstein condensate
    Mohamed Benarous
    The European Physical Journal D, 2013, 67
  • [50] Quantum turbulence in a trapped Bose-Einstein condensate
    Kobayashi, Michikazu
    Tsubota, Makoto
    PHYSICAL REVIEW A, 2007, 76 (04)