Dynamics of a vortex in a trapped Bose-Einstein condensate

被引:116
|
作者
Svidzinsky, AA [1 ]
Fetter, AL [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
来源
PHYSICAL REVIEW A | 2000年 / 62卷 / 06期
关键词
D O I
10.1103/PhysRevA.62.063617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a large condensate in a rotating anisotropic harmonic trap. Using the method of matched asymptotic expansions, we derive the velocity of an element of a vortex line as a function of the local gradient of the trap potential, the line curvature, and the angular velocity of the trap rotation. This velocity yields small-amplitude normal modes of the vortex for two-dimensional (2D) and 3D condensates. For an axisymmetric trap, the motion of the vortex line is a superposition of plane-polarized standing-wave modes. In a 2D condensate, the planar normal modes are degenerate, and their superposition can result in helical traveling np waves, which differs from a 3D condensate. Including the effects of trap rotation allows us to find the angular velocity that makes the vortex locally stable. For a cigar-shaped condensate, the vortex curvature makes a significant contribution to the frequency of the lowest unstable normal mode; furthermore, additional modes with negative frequencies appear. As a result, it is considerably more difficult to stabilize a central vortex in a cigar-shaped condensate than in a disk-shaped one. Normal modes with imaginary frequencies can occur for a nonaxisymmetric condensate (in both 2D and 3D). In connection with recent JILA experiments, we consider the motion of a straight vortex line in a slightly nonspherical condensate. The vortex line changes its orientation in space at the rate proportional to the degree of trap anisotropy and can exhibit periodic recurrences.
引用
收藏
页码:063617 / 063611
页数:14
相关论文
共 50 条
  • [21] Analytic vortex dynamics in an annular Bose-Einstein condensate
    Toikka, L. A.
    Suominen, K. -A.
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [22] Dynamics of a single vortex line in a Bose-Einstein condensate
    Bretin, V
    Rosenbusch, P
    Dalibard, J
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (02) : S23 - S28
  • [23] Vortex dynamics near the surface of a Bose-Einstein condensate
    Al Khawaja, U
    PHYSICAL REVIEW A, 2005, 71 (06):
  • [24] Vortex dynamics in a parabolically confined Bose-Einstein condensate
    Tempere, J
    Devreese, JT
    SOLID STATE COMMUNICATIONS, 2000, 113 (08) : 471 - 474
  • [25] Dynamics of a single vortex line in a Bose-Einstein condensate
    Rosenbusch, P
    Bretin, V
    Dalibard, J
    PHYSICAL REVIEW LETTERS, 2002, 89 (20) : 200403 - 200403
  • [26] VORTEX INTERACTION DYNAMICS IN TRAPPED BOSE-EINSTEIN CONDENSATES
    Torres, Pedro J.
    Carretero-Gonzalez, R.
    Middelkamp, S.
    Schmelcher, P.
    Frantzeskakis, D. J.
    Kevrekidis, P. G.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (06) : 1589 - 1615
  • [27] Turbulence in a trapped Bose-Einstein condensate
    Seman, J. A.
    Shiozaki, R. F.
    Poveda-Cuevas, F. J.
    Henn, E. A. L.
    Magalhaes, K. M. F.
    Roati, G.
    Telles, G. D.
    Bagnato, V. S.
    22ND INTERNATIONAL CONFERENCE ON ATOMIC PHYSICS, 2011, 264
  • [28] Vortex ring dynamics in trapped Bose-Einstein condensates
    Reichl, Matthew D.
    Mueller, Erich J.
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [29] Vortex in a trapped Bose-Einstein condensate with dipole-dipole interactions
    O'Dell, D. H. J.
    Eberlein, C.
    PHYSICAL REVIEW A, 2007, 75 (01):
  • [30] Output coupling from a trapped Bose-Einstein condensate in a vortex state
    Blakie, PB
    Ballagh, RJ
    Clark, CW
    PHYSICAL REVIEW A, 2003, 68 (02):