Dynamics of a vortex in a trapped Bose-Einstein condensate

被引:116
|
作者
Svidzinsky, AA [1 ]
Fetter, AL [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
来源
PHYSICAL REVIEW A | 2000年 / 62卷 / 06期
关键词
D O I
10.1103/PhysRevA.62.063617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a large condensate in a rotating anisotropic harmonic trap. Using the method of matched asymptotic expansions, we derive the velocity of an element of a vortex line as a function of the local gradient of the trap potential, the line curvature, and the angular velocity of the trap rotation. This velocity yields small-amplitude normal modes of the vortex for two-dimensional (2D) and 3D condensates. For an axisymmetric trap, the motion of the vortex line is a superposition of plane-polarized standing-wave modes. In a 2D condensate, the planar normal modes are degenerate, and their superposition can result in helical traveling np waves, which differs from a 3D condensate. Including the effects of trap rotation allows us to find the angular velocity that makes the vortex locally stable. For a cigar-shaped condensate, the vortex curvature makes a significant contribution to the frequency of the lowest unstable normal mode; furthermore, additional modes with negative frequencies appear. As a result, it is considerably more difficult to stabilize a central vortex in a cigar-shaped condensate than in a disk-shaped one. Normal modes with imaginary frequencies can occur for a nonaxisymmetric condensate (in both 2D and 3D). In connection with recent JILA experiments, we consider the motion of a straight vortex line in a slightly nonspherical condensate. The vortex line changes its orientation in space at the rate proportional to the degree of trap anisotropy and can exhibit periodic recurrences.
引用
收藏
页码:063617 / 063611
页数:14
相关论文
共 50 条
  • [31] Vortex dipole in a trapped two-dimensional Bose-Einstein condensate
    Li, Weibin
    Haque, Masudul
    Komineas, Stavros
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [32] Vortex knots in a Bose-Einstein condensate
    Proment, Davide
    Onorato, Miguel
    Barenghi, Carlo F.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [33] Vortex dynamics of rotating Bose-Einstein condensate of microcavity polaritons
    Bikash Padhi
    Romain Duboscq
    Ankita Niranjan
    Ravi K. Soni
    The European Physical Journal B, 2015, 88
  • [34] Dynamics and Interaction of Vortex Lines in an Elongated Bose-Einstein Condensate
    Serafini, S.
    Barbiero, M.
    Debortoli, M.
    Donadello, S.
    Larcher, F.
    Dalfovo, F.
    Lamporesi, G.
    Ferrari, G.
    PHYSICAL REVIEW LETTERS, 2015, 115 (17)
  • [35] Dynamics of vortex lattice formation in a rotating Bose-Einstein condensate
    Tsubota, M
    Kasamatsu, K
    Ueda, M
    PHYSICA B-CONDENSED MATTER, 2003, 329 : 21 - 22
  • [36] Vortex dynamics of rotating Bose-Einstein condensate of microcavity polaritons
    Padhi, Bikash
    Duboscq, Romain
    Niranjan, Ankita
    Soni, Ravi K.
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (05):
  • [37] Macroscopic dynamics of a Bose-Einstein condensate containing a vortex lattice
    Cozzini, M
    Stringari, S
    PHYSICAL REVIEW A, 2003, 67 (04):
  • [38] Dynamics of vortex formation in merging Bose-Einstein condensate fragments
    Carretero-Gonzalez, R.
    Anderson, B. P.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    Weiler, C. N.
    PHYSICAL REVIEW A, 2008, 77 (03):
  • [39] Vortex line and ring dynamics in trapped Bose-Einstein condensates
    Jackson, B.
    McCann, J.F.
    Adams, C.S.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (01): : 136041 - 136047
  • [40] Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates
    Yang, Tao
    Hu, Zhi-Qiang
    Zou, Shan
    Liu, Wu-Ming
    SCIENTIFIC REPORTS, 2016, 6